Browse > Article
http://dx.doi.org/10.12656/jksht.2016.29.2.51

A Study on the Characteristics of Amorphous TiAl by P/M Processing  

Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
Jeon, Seung-Jin (Dept. of Nanobiotronics, Hoseo University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.29, no.2, 2016 , pp. 51-55 More about this Journal
Abstract
The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP'ed amorphous compact under a pressure of 196 MPa shows a progressive growth of ${\gamma}-TiAl$ phase with ${\alpha}2$ ($Ti_3Al$), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP'ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of ${\gamma}-TiAl$ and particle-dispersion by second phase constituent, ${\alpha}2$.
Keywords
P/M processing; Titanium aluminide; Reaction ball milling; Crystallization; particle-dispersion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Kawabata, T. Kanai and O. Izumi : Acta Metall., 33 (1985) 1355.   DOI
2 W. Liang and D. Yang : Acta Metall. Sinica, 34 (1998) 597.
3 M. Zupan and K. J. Hemker : Mater. Sci. & Eng., 319 (2001) 810.
4 C. S. Han, J. Kor. Soc. Heat Treat., 18 (2005) 281.
5 C. S. Han and K. W. Koo : Kor. J. Mater. Res., 18 (2008) 51.   DOI
6 T. Khan, P. Caron and S. Naka : High Temperature Aluminides and Intermetallics, Ed. by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler, TMS, Warrendahle, (1990) 219.
7 M. V. Nathal : Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, Ed. by C. T. Liu, R. W. Cahn and G. Sauthoff, NATO ASI Series E, Kluwer Academic Publ., Dordrecht, 213 (1992) 541.
8 S. H. Kim, M. C. Kim, M. H. Oh and D. M. Wee : J. Kor. Inst. Met. & Mater., 39 (2001) 731.
9 R. T. Zheng, Y. G. Zhang, C. Q. Chen and G. A. Cheng : Mater. Sci. & Eng., A, 362 (2003) 192.   DOI
10 S. Romankov, W. Sha, S. D. Kaloshkin and K. Kaevitser : Surf. & Coat. Tech., 201 (2006) 3235.   DOI
11 C. Suryanarayana : J. Alloys and Comp., 509 (2011) S229.   DOI
12 K. Fantao, Y. Hongbao and C. Yuyong : Rare Met. Mater. & Eng., 34 (2005) 446.
13 H. Bahmanpour and S. Heshmati-Manesh : Inter. J. Mod. Phys., B, 22 (2008) 2933.   DOI
14 C. S. Han and J. Y. Nam : J. Res. Inst. Eng. & Tech., 34 (2015) 21.
15 O. N. Senkov, M. L. Övecoglu, N. Srisukhumbowornchai and F. H. Froes : Nanostructured Mater., 10 (1998) 935.   DOI
16 H. Sugimoto, K. Ameyama, T. Inaba and M. Tokizane : J. Jpn. Inst. Met., 53 (1989) 628.   DOI
17 D. L. Zhang, H. B. Yu and Y. Y. Chen : Mater. Sci. forum, 683 (2011) 149.
18 K. P. Rao, Y. V. Prasad and K. Suresh : Mater. & Design, 32 (2011) 4874.   DOI
19 A. G. Adams, M. N. Rahaman and R. E. Dutton : Mater. Sci. & Eng. properties, microstructure and processing. A, 477 (2008) 137.   DOI