• Title/Summary/Keyword: Powder bed fusion (PBF)

Search Result 36, Processing Time 0.021 seconds

Manufacture of AlSi10Mg Alloy Powder for Powder Bed Fusion(PBF) Process using Gas Atomization Method (가스 분무법을 이용한 Powder Bed Fusion(PBF) 공정용 AlSi10Mg 합금 분말 제조)

  • Im, Weon Bin;Park, Seung Joon;Yun, Yeo Chun;Kim, Byeong Cheol
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.120-126
    • /
    • 2021
  • In this study, AlSi10Mg alloy powders are synthesized using gas atomization and sieving processes for powder bed fusion (PBF) additive manufacturing. The effect of nozzle diameter (ø = 4.0, 4.5, 5.0 and 8.0 mm) on the gas atomization and sieving size on the properties of the prepared powder are investigated. As the nozzle diameter decreases, the size of the manufactured powder decreases, and the uniformity of the particle size distribution improves. Therefore, the ø 4.0 mm nozzle diameter yields powder with superior properties. Spherically shaped powders can be prepared at a scale suitable for the PBF process with a particle size distribution of 10-45 ㎛. The Hausner ratio value of the powder is measured to be 1.24. In addition, the yield fraction of the powder prepared in this study is 26.6%, which is higher than the previously reported value of 10-15%. These results indicate that the nozzle diameter and the post-sieve process simultaneously influence the shape of the prepared powder as well as the satellite powder on its surface.

Study on the Development and Sintering Process Characteristics of Powder Bed Fusion System (Powder Bed Fusion 시스템의 개발 및 소결 공정 특성에 관한 연구)

  • An, Young Jin;Bae, Sungwoo;Kim, Dong Soo;Kim, Jae Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.773-779
    • /
    • 2015
  • The laser Powder Bed Fusion (PBF) system is currently recognized as a leading process. Due to the various materials employed such as thermoplastic, metal and ceramic composite powder, the application's use extends to machinery, automobiles, and medical devices. The PBF system's surface quality of prototypes and processing time are significantly affected by several parameters such as laser power, laser beam size, heat temperature and laminate thickness. In order to develop a more elaborate and rapid system, this study developed a new PBF system and sintering process. It contains a 3-axis dynamic focusing scanner system that maintains a uniform laser beam size throughout the system unlike the $f{\theta}$ lens. In this study, experiments were performed to evaluate the effects of various laser scanning parameters and fabricating parameters on the fusion process, in addition to fabricating various 3D objects using a PA-12 starting material.

Status Quo of Powder Bed Fusion Metal Additive Manufacturing Technologies (Powder Bed Fusion 방식 금속 적층 제조 방식 기술 분석)

  • Hwang, In-Seok;Shin, Chang-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.10-20
    • /
    • 2022
  • Recently, metal additive manufacturing (AM) is being investigated as a new manufacturing technology. In metal AM, powder bed fusion (PBF) is a promising technology that can be used to manufacture small and complex metallic components by selectively fusing each powder layer using an energy source such as laser or an electron beam. PBF includes selective laser melting (SLM) and electron beam melting (EBM). SLM uses high power-density laser to melt and fuse metal powders. EBM is similar to SLM but melts metals using an electron beam. When these processes are applied, the mechanical properties and microstructures change due to the many parameters involved. Therefore, this study is conducted to investigate the effects of the parameters on the mechanical properties and microstructures such that the processes can be performed more economically and efficiently.

Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process (금속 Powder Bed Fusion(PBF) 공정용 분말의 특성평가 방법 및 관련 연구 동향)

  • Lee, Bin;Kim, Dae-Kyeom;Kim, Young Il;Kim, Do Hoon;Son, Yong;Park, Kyoung-Tae;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2020
  • A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation (금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션)

  • Lee, Hwaseon;Kim, Dae-Kyeom;Kim, Young Il;Nam, Jieun;Son, Yong;Kim, Taek-Soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

Production of Casting Cores using Powder Bed Fusion Techniques (분말적층용융 기술을 활용한 산업용 중자 제작)

  • Choi, Jin-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.239-244
    • /
    • 2019
  • Traditional casting methods require long production lead time and high cost while not accommodating design changes easily. One of the technological alternatives to improve casting method to meet diversifying needs is Additive Manufacturing (AM). Among the 7 AM techniques, Powder Bed Fusion (PBF) is deemed most appropriate for casting applications. Currently, most AM machines are imported; therefore limiting the scope of available services and applications. This paper explores the domestic development of AM machines as well as the applications in casting. Each chapter describes development phases of PBF machines, applicable materials and parameter settings, while the last chapter illustrates a successful case of additive manufacturing industrial casting cores.

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

Study for Applicability of Polymer and Polymer Coated Metal Materials within PBF System (PBF 시스템에서 고분자 및 금속 소재 적용성 연구)

  • Kim, Dong Soo;Bae, Sungwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.765-771
    • /
    • 2015
  • In an Additive Manufacturing (AM) system emplying the Powder Bed Fusion (PBF) system, polyamide-12 powder is currently recognized as the general material used. The Polyamide-12 powder's properties include an average particle size of 58 $58{\mu}m$, a density of 0.59 g/cm3, and melting point of $184^{\circ}C$, and can also be to used coat materials for metal powder. For this reason, the sintering process is similar to the polymer powder and polymer coated metal powder process, except during the post-process. The polyamide-12 powder has some disadvantages such as its high cost and the fact that it can only be used for the provided equipment from the maker. Therefore, this study aims to perform the applicability of new material, polymer and polymer coated metal, to the PBF system.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments (Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성)

  • Song, S.Y.;Lee, D.W.;Cong, D.V.;Kim, J.W.;Lee, S.M.;Joo, S.H.;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.