• Title/Summary/Keyword: Powder Flow

Search Result 617, Processing Time 0.032 seconds

Characterization of Fe-Co Nanocomposite Powders Produced by Chemical Vapor Condensation Methods (화학기상응축법으로 제조한 Fe-Co 나노복합 분말의 미세구조와 자기적 특성)

  • ;Z. H. Wang;;;Z. D. Zhang
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.322-328
    • /
    • 2002
  • Fe-Co nanocomposite powders with different composition were prepared by chemical vapor condensation (CVC) process and their characterizations were studied by means of X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The particles having the mean size of 5~25 nm consisted of metallic cores and oxide shells. The Co contents and particle size increased with increasing the carrier gas flow rate of Co precursor. The saturation magnetization and coercivity increased with increasing Co content. and the saturation magnetization maximized at the 40 wt.%Co. The Fe-Co nanocomposite powder oxidized at $400^{\circ}C$ showed the maximum coercivity of 1739 Oe.

Hydration Reaction Properties of Concrete With Binders and Admixtures (결합재와 혼화재 종류에 따른 콘크리트의 수화반응 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • Recently, owing to the development of industry and improvement of building techniques, concrete structures are becoming larger and higher. This study was performed to analyze hydration reation properties of concrete with binders and admixtures, such as OPC, low heat cement, belite rich cement, slag powder, lime powder and fly ash. To investigate effects of PC type superplasticizer on the hydration, experiments involving FT-IR, XRD, DSC, SEM were analyzed at the curing age 1day, 3days and 28days. The hydration reaction rate of OPC concrete slightly delayed at the curing age 1day, blast furnace slag powder and fly ash were more effective. BRC and LHC concretes can be used for concrete structures in winter season.

An Experimental Study on the Strength Properties of Reactive Powder Concrete Using copper slag aggregate (동제련 슬래그를 골재로 사용한 반응성 분말 콘크리트(RPC)의 강도 특성에 관한 실험적 연구)

  • Park, Min-Su;Lee, Seung-Hoon;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.278-279
    • /
    • 2014
  • This study was performed an evaluation of mechanical properties of reactive powder concrete using copper slag. So, various RPC containing copper slag were made by replacement ratio of copper slag and different the curing condition and their mechanical properties were investigated. From the experimental results, slump flow using copper slag tends to increase with replacement ratio. And also, 30% of copper slag with quartz sand was found to have a compressive strength superior to that of plain.

  • PDF

Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering (방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조)

  • Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

Particle Size and Shape Analysis : The Key to Success in Metal Powder Production

  • Pankewitz, Axel;Park, Yong-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.702-703
    • /
    • 2006
  • The particle size distribution and shape are among the important parameters for characterisation of quality of metal powders. Specific material properties such as ability to flow, reactivity as well as compressibility and its hardening potentials hence the most important characteristics of sintered metals - are determined by the size distribution and shape. The correct particle size distribution and particle shape information are the key to best product quality in atomisation processes of aluminium, milling of pure metals and other processes. This paper presents state-of-the-art technology for characterization of particle size distribution and shape.

  • PDF

The Study on the Properties of Calcined Oyster Shell & Hwang-To Powder (황토를 혼합 소성한 굴패각 미분말의 물성에 관한 연구)

  • Jung, Joo-hyung;Park, Min-Soo;Jung, Min-Soo;Kim, Hyo-Youl;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.41-44
    • /
    • 2007
  • Recently, the strenuous industrial waste is scattered and one of the oyster also make the serious environmental contamination. The purpose of this study is investigating an utilization ability as calcium binder of the oyster with Hwang-To according to a rate(10%, 20%, 30%, 40%, 50%). This study grasp physical properties of the oyster powder, bake production of the paste, and conduct the flow test, stiff time test and strength test. According to baking condition, strength of $1000^{\circ}C$(120minutes, rate 30%) is higher than any other condition. The oyster powder from above $900^{\circ}C$ seem possibility as binder hereafter. It is thought that the continuous research will be necessary.

  • PDF

Fluidity and strength characteristics of PCC(Powder Compacted Capsule) mixed mortar according to the type of coating material (코팅재 종류에 따른 PCC(Powder Compacted Capsule) 혼입 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Park, Jeong-Yeon;Ji, Dong-Min;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.255-256
    • /
    • 2022
  • As part of a study to alleviate problems caused by cracks in concrete structures, this study compares and analyzes the fluidity and strength characteristics of mortars used by adjusting the mixing ratio of two types of PCC(Powder Compacted Capsule) manufactured by different methods.

  • PDF

The Fludity and Compressive Strength Properties of Mortar Using Peronikel Slag Powder and Mixed Slag Aggregates (페로니켈슬래그 미분말 및 혼합슬래그 골재를 사용한 모르타르의 유동성 및 압축강도 특성)

  • Bae, Sunh-Ho;Jung, Yong-Jae;Lee, Jae-In;Kim, Ji-Hwan;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • This study compared and analyzed the fluidity and compressive strength characteristics of mortar using ferronikel slag powder and mixed slag fine aggregate as part of the study to reduce environmental load and increase recycling rate of industrial by-products.

  • PDF