• 제목/요약/키워드: Potentiodynamic polarization technique

검색결과 23건 처리시간 0.02초

저온분사코팅구리의 틈새부식 특성 평가 (Crevice Corrosion Evaluation of Cold Sprayed Copper)

  • 이민수;최희주
    • 방사성폐기물학회지
    • /
    • 제8권3호
    • /
    • pp.247-260
    • /
    • 2010
  • 한국원자력연구원 처분시스템개발과제에서는 처분용기 재료로 개발중인 저온분사코팅 구리에 대한 틈새부식(Crevice Corrosion) 시험을 실시하였다. 본 시험을 통하여 틈새에서의 부식의 발생여부와 발생되는 시점인 재부동태 전위(Repassivation Potential)를 측정하고자 하였다. 틈새부식 시험 방법으로 (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) SWRI의 Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, 그리고 (3) ASTM G192-08 (THE method) :Potentiodynamic- Galvanostatic -Potentiostatic Method 등의 3가지 방법을 소개하였다. 실제 저온분사 코팅구리의 부식시험에서는 ASTM G61-86에 따라서 틈새부식장치를 설치하고, 저온분사코팅구리가 KURT 지하수를 모사한 용액에서 어떻게 틈새부식이 일어나는지 살펴보았다. 전기적 부식조건으로는 Cyclic Polarization Test, Potentiostatic Polarization Test, 및 Electrochemical Impedance Spectroscopy 등을 사용하였다. 그리고 부식이 된 시편에 대해 Profilometer Measurement를 통해 실제 부식표면의 높낮이를 조사하여 틈새부식 유무를 관찰하였다. 최종적인 결론에서는 저온분사코팅구리는 틈새부식을 나타나지 않는다는 것을 확인할 수 있었다. 그리고 시험에 사용된 세종류의 구리에 대한 상대적인 부식평가를 한 결과, 부식전위를 나타내는 개방회로(Open Cell)에서의 전위는 구리의 제조방식과 상관없이 구리의 순도가 높을수록 높은 값을 보이는 것을 확인할 수 있었다. 결론적으로 KURT 심층지하수 조건에서는 구리는 틈새부식이 발생되지 않는다고 결론지었다.

Micro-droplet cell을 이용한 Fe-17Cr 합금의 공식 발생에 대한 연구 (A Study on the Initiation of Pitting Corrosion of Fe-17Cr Alloy Using Micro-Droplet Cell Technique)

  • 김재중;이재봉
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.809-816
    • /
    • 2008
  • The influences of various parameters such as inclusions, surface roughness, exposed areas and chloride ion concentrations on the initiation of pitting of Fe-17Cr alloy were investigated, using micro-droplet cell technique. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local currents with the potentiodynamic polarization. Micro electrochemical tests were carried out at the inclusions after EDX analysis of inclusion. EDX analysis identified inclusions as Cr-oxides. It was found that some active inclusions among Cr-oxide inclusions acted as initiation sites for pitting corrosion. In addition, the rougher surface and the denser chloride ion concentration offered easier pit initiation sites, causing the more susceptible to pitting corrosion.

Chemical Protection of Stainless Steel by $TiO_2$ Coating Using Dip-Coating Technique

  • Kim, Kyung-Nam;Shin, Dae-Yong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2009
  • Sol-gel coatings of $TiO_2$ have been prepared from $TiO_2$ sol and deposited by dip-coating technique on 316L stainless steel sheets in order to study the electrochemical behaviorin corrosive solutions. The influence of the coatings on the chemical corrosion of the substrate has been evaluated by potentiodynamic polarization curves in different aqueous NaCl solution at $25^{\circ}C$.

  • PDF

CoCrTa/CrNi 자기기록매체의 열처리에 따른 부식거동 변화 (The Effect of Annealing on Corrosion Behavior of CoCrTa/CrNi Magnetic Recording Media)

  • 우준형;남인탁
    • 한국자기학회지
    • /
    • 제9권4호
    • /
    • pp.210-216
    • /
    • 1999
  • 본 연구에서는 e-beam evaporator를 사용하여 제조한 CoCrTa/CrNi 박막시편의 자성층 두께에 따른 부식특성과 열처리에 따른 부식특성의 변화를 알아보았다. Potentiodynamic scan을 이용하여 알아본 결과, 자성층 두께가 증가함에 따라 부식전위가 낮아지고, 부동태 전류밀도가 감소함을 알 수 있었다. XRD를 이용한 분석결과에 따르면, 이것은 자성층 두께가 증가함에 따라 (100)면보다 수소과전압이 큰 (0002)면으로 우선 성장했기 때문이다. 열처리에 따른 CoCrTa(400$\AA$) 자성박막의 부식특성 변화를 potentiodynamic scan과 accelerated corrosion chamber test를 이용하여 알아본 결과, 열처리후 박막시편의 내부식성이 우수해짐을 알 수 있었다. 이것은 열처리에 의해 자성층위에 Cr 산화물층이 형성되고, 이 산화물층이 자성층의 보호막으로 작용했기 때문이다.

  • PDF

Inhibition Effect of Nevirapine an Antiretroviral on the Corrosion of Mild Steel Under Acidic Condition

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.835-841
    • /
    • 2011
  • Corrosion inhibition of mild steel by nevirapine, an antiretroviral has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy technique and weight loss methods. The experimental results suggested, nevirapine is a good corrosion inhibitor for mild steel in 1M hydrochloric acid medium and the inhibition efficiency increased with increase in inhibitor concentration. The kinetic parameters for corrosion process and thermodynamic parameters for adsorption process were calculated and discussed. The adsorption of the inhibitor on the surface of mild steel followed Langmuir adsorption isotherm.

Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc.

  • Valbuena-Nino, E.D.;Gil, L.;Hernandez, L.;Sanabria, F.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2020
  • The hybrid method of three-dimensional ion implantation and electric arc is presented as a novel plasma-ion technique that allows by means of high voltage pulsed and electric arc discharges, the bombardment of non-metallic and metallic ions then implanting upon the surface of a solid surface, especially out of metallic nature. In this study AISI/SAE 4140 samples, a tool type steel broadly used in the industry due to its acceptable physicochemical properties, were metallographically prepared then surface modified by implanting titanium and simultaneously titanium and nitrogen particles during 5 min and 10 min. The effect of the ion implantation technique over the substrate surface was analysed by characterization and electrochemical techniques. From the results, the formation of Ti micro-droplets upon the surface after the implantation treatment were observed by micrographs obtained by scanning electron microscopy. The presence of doping particles on the implanted substrates were detected by elemental analysis. The linear polarization resistance, potentiodynamic polarization and total porosity analysis demonstrated that the samples whose implantation treatment with Ti ions for 10 min, offer a better protection against the corrosion compared with non-implanted substrates and implanted at the different conditions in this study.

타이타늄 합금에서 산소발생전위 지연이 부동태 피막 특성과 국부부식 저항성에 미치는 영향 (Effect of Delayed Oxygen Evolution in Anodic Polarization on the Passive Film Characteristic and Localized Corrosion Resistance of Titanium Alloys)

  • 오유수;서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2020
  • The objective of this study was to investigate delayed oxygen evolution and localized corrosion resistance of titanium alloys by performing potentiodynamic polarization, potentiostatic polarization, and Mott-Schottky measurements. Delayed oxygen evolution was compared among titanium alloys, 316 stainless steel, and platinum. Difference in delayed oxygen evolution between titanium alloys and other metals was attributed to specific surface characteristic of each metal. Delayed oxygen evolution of titanium alloys resulted from the predominant process of ionic conduction over electronic conduction. The effect of oxygen evolution on localized corrosion of titanium alloys was investigated using electrochemical critical localized corrosion temperature (E-CLCT) technique. Mott-Schottky measurement was performed to clarify the difference in film properties between titanium alloys and stainless steels. Titanium alloys were found to have much lower donor density than stainless steels by 1/28. These results indicate that delayed oxygen evolution has little influence on the concreteness of passive film and the resistance to localized corrosion of titanium alloys.

양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구 (Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater)

  • 황현규;신동호;정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권5호
    • /
    • pp.259-264
    • /
    • 2020
  • Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.

Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.85-91
    • /
    • 2014
  • The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.