1 |
A. M. Magdy, S. S. Ibrahim, and M. M. Hamza, Corrosion behavior of some austenitic stainless steels in chloride environments, Materials Chemistry and Physics, 115, 805 (2009). Doi: https://doi.org/10.1016/j.matchemphys.2008.11.016
DOI
|
2 |
Y. Yi, P. Cho, A. Al Zaabi, Y. Addad, and C. Jang, Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution, Corrosion Science, 74, 92 (2013). Doi: https://doi.org/10.1016/j.corsci.2013.04.028
DOI
|
3 |
A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel, Corrosion Science, 159, 108160 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108160
DOI
|
4 |
H. P. Leckie and H. H. Uhlig, Environmental Factors Affecting the Critical Potential for Pitting in 18-8 Stainless Steel, Journal of The Electrochemical Society, 113, 1262 (1966). Doi: https://doi.org/10.1149/1.2423801
DOI
|
5 |
B. Bobic and B. Jegdic, Pitting Corrosion of stainless Steels in Chloride Solutions, Scientific Technical Rewiew, LV, 3-8. (2005).
|
6 |
M. H. Moayed and R. C. Newman, Deterioration in critical pitting temperature of 904L stainless steel by addition of sulfate ions, Corrosion Science, 48, 3513 (2006). Doi: https://doi.org/10.1016/j.corsci.2006.02.010
DOI
|
7 |
J. Liu, T. Zhang, G. Meng, Y. Shao, and F. Wang, Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation, Corrosion Science, 91, 232 (2015). Doi: https://doi.org/10.1016/j.corsci.2014.11.018
DOI
|
8 |
B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50, 1841 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.006
DOI
|
9 |
K. V. S. Ramana, T. Anita, S. Mandal, S. Kaliappan, H. Shaikh, P. V. Sivaprasad, and H. S. Khatak, Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling, Materials & Design, 30, 3770 (2009). Doi: https://doi.org/10.1016/j.matdes.2009.01.039
DOI
|
10 |
P. Marcus, Corrosion mechanisms in theory and practice, 3rd ed., p. 460, CRC press, New York (2011).
|
11 |
D. C. Silverman, Proc. Corrosion Conf., p. NACE 98299, NACE, san diego, California (1998).
|
12 |
E. A. El Meguid and A. A. El Latif, Critical pitting temperature for Type 254 SMO stainless steel in chloride solutions, Corrosion Science, 49, 263 (2007). Doi: https://doi.org/10.1016/j.corsci.2006.06.011
DOI
|
13 |
S. Esmailzadeh, M. Aliofkhazraei, and H. Sarlak, Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review, Protection of Metals and Physical Chemistry of Surfaces, 54, 976 (2018). Doi: https://doi.org/10.1134/S207020511805026X
DOI
|