• Title/Summary/Keyword: Potentiodynamic polarization

Search Result 292, Processing Time 0.022 seconds

Can the Point Defect Model Explain the Influence of Temperature and Anion Size on Pitting of Stainless Steels

  • Blackwood, Daniel J.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.253-260
    • /
    • 2015
  • The pitting behaviours of 304L and 316L stainless steels were investigated at $3^{\circ}C$ to $90^{\circ}C$ in 1 M solutions of NaCl, NaBr and NaI by potentiodynamic polarization. The temperature dependences of the pitting potential varied according to the anion, being near linear in bromide but exponential in chloride. As a result, at low temperatures grades 304L and 316L steel are most susceptible to pitting by bromide ions, while at high temperatures both stainless steels were more susceptible to pitting by small chloride anions than the larger bromide and iodide. Thus, increasing temperature appears to favour attack by smaller anions. This paper will attempt to rationalise both of the above findings in terms of the point defect model. Initial findings are that qualitatively this approach can be reasonably successful, but not at the quantitative level, possibly due to insufficient data on the mechanical properties of thin passive films.

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

Protective Coatings for the Elements of Ships Power Plants which Use Sea Water

  • Minaev, Alexander N.;Gnedenkov, S.V.;Sinebryukhov, S.L.;Mashtalar, D.V.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.341-350
    • /
    • 2012
  • In this paper we observe the protective coatings carbon for steel, aluminium and titanium alloys were obtained by plasma electrolytic oxidation (PEO) under unipolar and bipolar conditions. The anticorrosion properties and the thermal stability of the surface layers were studied by electrochemical impedance spectroscopy and potentiodynamic polarization. It was found that the application of the bipolar PEO mode enables one to synthesize the surface layers that possess enhanced anticorrosion and mechanical properties. results of research of antiscale PEO - coatings for marine power equipment are presented. The combined method of prevention of corrosion and scale formation was tested at the industrial plants of Russian Shipyard "Zvezda".

Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater (ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향)

  • Han, Min-Su;Im, Myeong-Hwan;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.

Materials and Electrochemistry: Present and Future Battery

  • Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.115-131
    • /
    • 2016
  • Though battery chemistry and technology had been developed for over a hundred years back, increase in demand for storage energy, in the computer accessories, cell phones, automobile industries for future battery car and uninterrupted power supply, has made, the development of existing and new battery, as an emerging areas of research. With innovation of high energetic inexpensive Nano structure materials, a more energy efficient battery with lower cost can be competitive with the present primary and rechargeable batteries. Materials electrochemistry of electrode materials, their synthesis and testing have been explained in the present paper to find new high efficient battery materials. The paper discusses fundamental of electrochemistry in finding true cell potential, overvoltages, current, specific energy of various combinations of anode-cathode system. It also describes of finding the performance of new electrode materials by various experiments viz. i. Cyclic Voltammetry ii. Chronoamperometry iii. Potentiodynamic Polarization iv. Electrochemical Impedance Spectroscopy (EIS). Research works of different battery materials scientists are discussed for the development of existing battery materials and new nano materials for high energetic electrodes. Problems and prospects of a few promising future batteries are explained.

Effect of Polyaniline Film by Electro-synthesis on Corrosion Resistance of Steel Sheets in the Aqueous Solution of Sodium Chloride (NaCl 수용액내에서 강판의 내식성에 미치는 전해합성 폴리아닐린 피막의 영향)

  • Yoon, J.M.;Kim, Y.G.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.625-630
    • /
    • 2003
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as Polyaniline(PANI). Polyaniline films were electrosynthesized by oxidation of aniline on cold rolled and weathering sheets using the potentiostatic mode from an aqueous oxalic acid medium. Potentiodynamic polarization curves were obtained for cold rolled and weathering sheets in the aqueous solution of 3% sodium chloride. The structure and properties of polyaniline film were elucidated using SEM, DSC, SST. A high corrosion resistance of polyaniline films were observed with a gain of the corrosion potential around 600-900 mV positive in the substrate covered with polyaniline than in the case without it.

The Effects Nitrogen percentage and Processing Time on the AISI 420 martensitic stainless steel during Plasma nitriding

  • Lee, In-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.289-290
    • /
    • 2015
  • In this experiment, nitriding treatment has been performed at $400^{\circ}C$ with various $N_2$ content and with changing processing time on AISI 420 martensitic stainless steel to investigate the expanded martensite layer (${\alpha}^{\prime}_N$ layer) formation behavior. Nitriding was implemented with changing $N_2$ content from 10% to 25% for 15 hrs and processing time was changed from 4hr to 15hr at 25% $N_2$ content. After treatment, the behavior of the ${\alpha}^{\prime}_N$ layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. It was found that the surface hardness and ${\alpha}^{\prime}_N$ layer thickness increases with increasing $N_2$ percentage and processing time. Although their corrosion behaviors are worse than the bare sample.

  • PDF

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

Electrochemical Investigation of Inhibitory of New Synthesized 3-(4-Iodophenyl)-2-Imino-2,3-Dihydrobenzo[d]Oxazol-5-yl 4-Methylbenzenesulfonate on Corrosion of Stainless Steel in Acidic Medium

  • Ehsani, Ali;Moshrefi, Reza;Ahmadi, Maliheh
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • 3-(4-Iodophenyl)-2-imino-2,3-dihydrobenzo[d]oxazol-5-yl 4-methylbenzenesulfonate (4-IPhOXTs) was synthesized and its inhibiting action on the corrosion of stainless steel 316L (SS) in sulfuric acid was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of the investigation show that this compound has excellent inhibiting properties for SS corrosion in sulfuric acid. Inhibition efficiency increases with increase in the concentration of the inhibitor. The adsorption of 4-IPhOXTs onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of −8.45 kJ mol−1 . Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of 4-IPhOXTs.

A Study on Pitting Resistance of TiN Film Coated on Inconel 600 by CPP Test in High Temperature NaCl Solution (nconel 600위에 증착된 TiN 박막의 고온 NaCl 수용액에서의 CPP 실험에 의한 핏팅저항성의 연구)

  • 김용일;정한섭;김홍회;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1301-1307
    • /
    • 1995
  • Pitting corrosion of TiN film deposited on Inconel 600 by plasma assisted chemical vapor deposition (PACVD) was investigated. Cyclic potentiodynamic polarization (CPP) tests were conducted in order to determine the pit nucleation potentials, Enp, of the TiN-deposited sample and the bare Inconel 600 in deaerated NaCl solution at 25, 135 and 20$0^{\circ}C$. The effects of the TiN film thickness, the solution temperature and the Cl- concentration on Enp were studied. Enp of the TiN-deposited sample which had the film thickness above 1${\mu}{\textrm}{m}$ were higher than those of the bare Inconel 600 by 300~600mV at all the solution temperatures, implying the pitting resistance improvement of the TiN film. The morphologies of the pits generated after immersion test were examined with a scaning electron microscopy. The higher was the solution temperature, the more corrosion products, mainly composed of Cr and Ni oxides, were formed.

  • PDF