Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.4.195

Corrosion of Titanium Alloys in High Temperature Seawater  

Pang, J.J. (Department of Materials Science & Engineering, National University of Singapore)
Blackwood, D.J. (Department of Materials Science & Engineering, National University of Singapore)
Publication Information
Corrosion Science and Technology / v.14, no.4, 2015 , pp. 195-199 More about this Journal
Abstract
Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.
Keywords
titanium; seawater; adhesive; high temperature; corrosion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Blackwood, R. Greef and L. M. Peter, Electrochim. Acta, 34, 875 (1989).   DOI   ScienceOn
2 D. J. Blackwood, L. M. Peter and D. E. Williams, Electrochim. Acta, 33, 1143 (1988).   DOI   ScienceOn
3 D. J. Blackwood, L. M. Peter, H. E. Bishop, P. R. Chalker and D. E. Williams, Electrocim. Acta, 34, 1401 (1989).   DOI   ScienceOn
4 L. M. Young, G. A. Young, J. R. Scully and R. P. Gangloff, Metall. Mater. Trans. A, 26, 1257 (1995).   DOI
5 A. M. Alvarez, I. M. Robertson and H. K. Birnbaum, Acta Mater., 52, 4161 (2004).   DOI   ScienceOn
6 D. G. Kolman and J. R. Scully, Corros. Sci., 42, 1863 (2000).   DOI   ScienceOn
7 N. Rajendran and T. Nishimura, Mater. Corros., 58, 334 (2007).   DOI   ScienceOn
8 D. J. Blackwood, Electrochim. Acta, 46, 563 (2000).   DOI   ScienceOn
9 D. W. Shoesmith and J. J. Noel, Shreir's Corrosion, 4th ed., p. 2042, (Ed.s.) H. Stott, S. Lyon, A. Richardson, R. Lindsay, M. Graham, R. A. Cottis and D. Scantlebury, Elsevier Science, London (2009).
10 Y. Li, Private communication, National University of Singapore, Singapore (2014).
11 J. S. Lee, M. L. Reed and R. G. Kelly, J. Electrochem. Soc., 151, B423 (2004).   DOI   ScienceOn
12 M. I. Abdulsalam, Corros. Sci., 47, 1336 (2005).   DOI   ScienceOn
13 B. P. Cai, Y. H. Liu, X. J. Tian, F. Wang, H. Li and R. J. Ji, Corros. Sci., 52, 3235 (2010).   DOI   ScienceOn
14 B. Balakrisnan, M. Eng. Thesis, Natioanl University of Singapore (1998).