Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.6.253

Can the Point Defect Model Explain the Influence of Temperature and Anion Size on Pitting of Stainless Steels  

Blackwood, Daniel J. (Department of Materials Science & Engineering, National University of Singapore)
Publication Information
Corrosion Science and Technology / v.14, no.6, 2015 , pp. 253-260 More about this Journal
Abstract
The pitting behaviours of 304L and 316L stainless steels were investigated at $3^{\circ}C$ to $90^{\circ}C$ in 1 M solutions of NaCl, NaBr and NaI by potentiodynamic polarization. The temperature dependences of the pitting potential varied according to the anion, being near linear in bromide but exponential in chloride. As a result, at low temperatures grades 304L and 316L steel are most susceptible to pitting by bromide ions, while at high temperatures both stainless steels were more susceptible to pitting by small chloride anions than the larger bromide and iodide. Thus, increasing temperature appears to favour attack by smaller anions. This paper will attempt to rationalise both of the above findings in terms of the point defect model. Initial findings are that qualitatively this approach can be reasonably successful, but not at the quantitative level, possibly due to insufficient data on the mechanical properties of thin passive films.
Keywords
stainless steel; pitting corrosion; anion size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Blackwood, and S. E. Chua, Proceedings of the 17th International Corrosion Congress on Comparison on influence of molybdenum on the pitting of stainless steels in chloride and bromide solutions, p. 72, Perth, Australia (2011).
2 A. I. Munoz, J. G. Anton, J. L. Guinon and V. P. Herranz, Corros. Sci., 48, 3349 (2006).   DOI
3 J. E. Truman, Stainless steels, Corrosion 3rd ed., (eds. L. L. Shrier, R. A. Jarman and G. T. Burstein), Vol. 1, Chapter 3, p. 34, Butterworth-Heinemann, Oxford (1994).
4 G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998).   DOI
5 J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976).   DOI
6 P. C. Pistorius and G. T. Burstein, Phil. Trans. R. Soc. A, 341, 531 (1992).   DOI
7 D. D. Macdonald, Proceedings of the Electrochemical Society on Pits and pores II : Formation, properties, and significance for Advanced Materials, 2000-25, 141, Phoenix, Arizona (2000).
8 D. D. Macdonald, Corros. Eng. Sci. Techn., 49, 143 (2014).   DOI
9 ASTM G-61-86: Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys, ASTM International, West Conshohocken, PA, USA Re-approved (2009).
10 R. T. DeHoff, Thermodynamics in materials science, p. 409, McGraw Hill Inc., Singapore (1993).
11 R. Schmid, A. M. Miah, and V. N. Sapunov, Phys. Chem. Chem. Phys., 2, 97 (2000).   DOI
12 B. E. Conway and E. Aryranci, J. Solution Chem., 28, 163 (1999).   DOI
13 J. L. Trompette, Corros. Sci., 82, 108 (2014).   DOI
14 C. G. Malmberg and A. A. Maryott, J. Res. Nat. Bur. Stand., 56, 2641 (1956).
15 K. V. Rao, A. Smakula, J. Appl. Phys., 36, 2031 (1965).   DOI
16 K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Mater. Trans., 47, 2540 (2006).   DOI
17 P. H. Fang and W. S. Brower, Phys. Rev., 129, 1561 (1963).   DOI
18 H. H. Girault, Charge transfer across liquid-liquid interfaces, Modern Aspects of Electrochemistry, 25, p. 1, Plenum Press, New York (1993).   DOI
19 C. E. Weir, J. Res. Nat. Bur. Stand., 69A, 29 (1965).   DOI