• Title/Summary/Keyword: Potential theory

Search Result 1,527, Processing Time 0.033 seconds

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

A Study on the Prediction of the Material Properties of Magnesium Alloys Using Density Functional Theory Method (밀도함수 이론법을 이용한 마그네슘 합금의 재료특성 예측에 관한 연구)

  • Baek, Min-Sook;Won, Dae-Hee;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.637-641
    • /
    • 2007
  • The total energy and strength of Mg alloy doped with Al, Ca and Zn, were calculated using the density functional theory. The calculations was performed by two programs; the discrete variational $X{\alpha}\;(DV-X{\alpha})$ method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using $DV-X{\alpha}$. The optimized crystal structures calculated by VASP were compared to the measured structure. The density of state and the energy levels of dopant elements was discussed in association with properties. When the lattice parameter obtained from this study was compared, it was slightly different from the theoretical value but it was similar to Mk, and we obtained the reliability of data. A parameter Mk obtained by the $DV-X{\alpha}$ method was proportional to electronegativity and inversely proportional to ionic radii. We can predict the mechanical properties because $\Delta{\overline{Mk}}$is proportional to hardness.

Quantum Transition Properties of Quasi-Two Dimensional Si System in Electron Deformation Potential Phonon Interacting (전자 포텐셜 변형과 포논 상호작용에 의한 준 이차원 Si 구조의 전도 현상 해석)

  • Lee, Su-Ho;Kim, Young-Mun;Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.129-134
    • /
    • 2017
  • We investigated theoretically the quantum optical transition properties of Si, in quasi 2-Dimensinal Landau splitting system, based on quantum transport theory. We apply the quantum transport theory (QTR) to the system in the confinement of electrons by square well confinement potential under linearly polarized oscillating field. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on four transition processes, namely, the intra-leval transition process, the inter-leval transition process, the phonon emission transition process and the phonon absorption transition process.

Research On Technical Writing Educational Methods Based On Complex Learning Systems (학습복잡계 기반의 공학적 글쓰기 교수 방법 연구)

  • Kim, Hae-Kyung;Kim, Cha-Jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1521-1528
    • /
    • 2010
  • This paper examines technical writing and teaching methods based on the perspectives of the complex learning system theory. So, the paper first discusses the constituent elements and characteristics of the complex learning system theory and continues to examine the potential of applying the complex learning system theory to new teaching methods. As a result, not only did the research expand the approach methods of providing technical writing education but also confirmed the potential of actual implementation. Such results will provide a leeway to start applying new teaching methods for technical writing education. Furthermore, the paper proposes more detailed case studies related to this topic as well as development of this research to produce textbooks and other higher level researches.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.

A Theoretical Study on STM image of Carbon Nanotube (탄소나노튜브 표면의 STM 이미지를 통한 전기적 특성 연구)

  • 문원하;황호정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.314-317
    • /
    • 2002
  • Since the early work of Tersoff and Hamann on the theory of the scanning tunneling microscope (STM), many theoretical approaches have been developed in order to gain further physical insight into the real space image that this technique provides. In this Paper, the STM image of Carbon nanotubes (CNT's) was calculated through the theoretical study. The optimized structure of CNT's was simulated using Brenner's hydrocarbon potential. The structure of simulation is (5. 5) armchair CNT and (10. 0) zigzag CNT. Also we have used that the extended Huckel tight binding (EHTB) theory already provides a fairly good qualitative description of the main processes that control the final contrast in the STM image. we found that the shape of the calculated images is hardly dependent on the exact electronic charge distribution at the surface. The STM images are not too sensitive to the precise electronic structure but, rather, they reflect its qualitative features. As a result of the simulation, The STM images of CNT's and the electronic density distribution were investigated. It found that the EHTB theory is appropriate for STM image calculation and that the STM images are in agreement with the result of Experiment.

  • PDF

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2855-2860
    • /
    • 2012
  • The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.