DOI QR코드

DOI QR Code

Quantum Transition Properties of Quasi-Two Dimensional Si System in Electron Deformation Potential Phonon Interacting

전자 포텐셜 변형과 포논 상호작용에 의한 준 이차원 Si 구조의 전도 현상 해석

  • Lee, Su-Ho (Dept. of Electrical Engineering, Donga University) ;
  • Kim, Young-Mun (Dept. of Electrical Engineering, Masan University) ;
  • Kim, Hai-Jai (Dept. of Electrical Engineering, Masan University) ;
  • Joo, Seok-Min (Dept. of Electrical Engineering, Masan University)
  • Received : 2017.08.09
  • Accepted : 2017.08.22
  • Published : 2017.09.01

Abstract

We investigated theoretically the quantum optical transition properties of Si, in quasi 2-Dimensinal Landau splitting system, based on quantum transport theory. We apply the quantum transport theory (QTR) to the system in the confinement of electrons by square well confinement potential under linearly polarized oscillating field. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on four transition processes, namely, the intra-leval transition process, the inter-leval transition process, the phonon emission transition process and the phonon absorption transition process.

Keywords

References

  1. C. S. Ting, S. C. Ying and J. J. Quinn, "Theory of cyclotron resonance of interacting electrons in a semiconducting surface inversion layer", Phys. Rev., B16, pp. 5394-5404, 1977.
  2. Wu Xiaoguang, F. M. Peeters and J. T. Devreese, "Theory of the cyclotron resonance spectrum of a polaron in two dimensions", Phys. Rev., B34, pp. 8800-8809, 1986.
  3. P. Grigoglini and G. P. Parravidini, "Phonon thermal baths: A treatment in terms of reduced models", Phys. Rev., B25, pp. 5180-5187, 1982.
  4. J. R. Barker, "Quantum transport theory of high-field conduction in semiconductors", J. Phys. C6, pp. 2633-2684, 1973.
  5. R. Kubo, "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems"' J. Phys. Soc. Jpn. 12, pp. 570-586, 1957. https://doi.org/10.1143/JPSJ.12.570
  6. H. Mori, "Transport, Collective Motion, and Brownian Motion", Progr. Theor. Phys. 33, pp. 423-455, 1965. https://doi.org/10.1143/PTP.33.423
  7. K. Nagano, T. Karasudani and H. Okamoto, "Reduced Equations of Motion for Generalized Fluxes and Forces in the Continued-Fraction Expansion", Progr. Theor. Phys. 63, pp. 1904-1916, 1980. https://doi.org/10.1143/PTP.63.1904
  8. R. Zwanzig, "Theoretical basis for the Rouse-Zimm model in polymer solution dynamics"' J. Chm. Phys. 60, pp. 2717-2720, 1960.
  9. V. M. Kenkre, "Integrodifferential Equation for Response Theory", Phys. Rev. A4, pp. 2327-2330, 1971.
  10. S. G. Jo, N. L. Kang, Y. J. Cho, S. D. Choi. "Modeling of the Cyclotron Transition Theory for Quasi-2-DimensionalL ElectronN-Systens by the Isolation-Projection Technique", J. Korea Phys. Soc. 30, pp. 103-110, 1997.
  11. J. Y. Sug and S. D. Choi. "Quantum transport theory based on the equilibrium density projection technique", Phys. Rev. E, vol. 55, pp. 314-321. 1997. https://doi.org/10.1103/PhysRevE.55.314
  12. J. Y. Sug and S. D. Choi. "Quantum transition processes in deformation potential interacting systems using the equilibrium density projection technique", Phys. Rev. B, vol. 64, p. 235210, 2001. https://doi.org/10.1103/PhysRevB.64.235210
  13. H. Kobori, T. Ohyama, and E. Otsuka, "Line-Width of Quantum Limit Cyclotron Resonance. I. Phonon Scatterings in Ge, Si, CdS and InSb"' J. Phys. Soc. Jpn. 59, pp. 2141-2163, 1989.
  14. J. Y. Sug, S. H. Lee, J. J. Kim, "The magnetic field dependence of the deformation potential materials in the square well confinement potential"' Cent. Eur. J. Phys. vol. 6, no. 4, 812-324, 2008. https://doi.org/10.2478/s11534-008-0114-1
  15. J. Y. Sug, S. H. Lee, J. Y. Choi, G. Sa-Gong. and J. J. Kim, "Magnetic Properties of Optical Quantum Transition Line Shapes and Line Widths of Electron -Piezoelectric Potential Phonon Interacting Materials under Circularly Oscillating Fields", Jpn. J. Appl. Phys., 47, 7757-7763, 2008. https://doi.org/10.1143/JJAP.47.7757
  16. J. Y. Sug, S. H. Lee and J. Y. Choi, "The temperature depedence of quantum optical transition properties of GaN and GaAs in a infinite square well potential system", J. Korean Phys. Soc., 54, 1403, 2009. https://doi.org/10.3938/jkps.54.1403
  17. C. M. Wolfe and G. E. Stillman Processes, "Physical Properties of Semiconductors", Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
  18. D. K. Ferry Process, "Semiconductors", Macmillan, New York, 1991.
  19. S. L. Chung Process, "Physics of Optoelectronic Devices", Wiley, New York, 1995.