• Title/Summary/Keyword: Potential acid

Search Result 3,826, Processing Time 0.05 seconds

Antioxidative Effects of Doenjang Fermented Using Bacillus subtilis DJI (Bacillus subtilis DJI을 이용하여 제조한 된장의 항산화효과)

  • Lee, Jae-Joon;Lee, Yu-Mi;Chang, Hae-Choon;Lee, Myung-Yul
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.554-561
    • /
    • 2009
  • We investigated the antioxidative effects of solvent extracts of doenjang fermented using Bacillus subtilis DJI (DJI doenjang) in vitro. The solvents used for extraction were ethanol, n-hexane, and water. The antioxidative activities of DJI doenjang solvent extracts were measured by estimation of peroxide value, the presence of linoleic acid level, and nitrite scavenging activity, the Rancimat test, and 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical generation, in comparison with the commercial antioxidant butylated hydroxytoluene (BHT). The peroxide value of an ethanol extract was lower than those obtained using n-hexane and water extracts. Furthermore, the peroxide value of the ethanol extract was similar to that obtained after BHT treatment. The nitrite scavenging activity was 23.36% after addition of 600 ppm DJI doenjang ethanol extract, and the DPPH free-radical scavenging activity was 19.06% under same condition, which shows that DJI doenjang ethanol extract exhibited lower antioxidative capacities than did BHT. In the Rancimat test, the ethanol extract (11.20 min induction time), n-hexane extract (7.58 min induction time), and water extract (8.26 min induction time) after treatment with 600 ppm DJI doenjang extracts demonstrated longer induction periods than did BHT (6.94 min). These results indicate that DJI doenjang has potential anti-oxidative activity.

Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root (레드 비트 뿌리 추출물의 항산화 및 항염증 효과)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.413-420
    • /
    • 2017
  • This study was designed to examine the in vitro antioxidant and anti-inflammatory effects of red beet (Beta vulagaris) root. Red beet root was extracted using 70% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. Antioxidative ability was evaluated by bioassays using total polyphenol contents and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt) radical scavenging activity. Ethyl acetate fraction of red beet root was best on total polyphenol contents ($37.02{\pm}0.37mg\;GAE/g$) and ABTS radical scavenging effects ($IC_{50}$ $42.9{\pm}9.5{\mu}g/mL$). For the anti-inflammatory activity in RAW264.7 cells, the hexane fraction showed the highest inflammatory effect. Dose response studies were performed to determine the inhibitory effect of hexane fraction of red beet root on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The hexane fraction of red beet root inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$), in a dose-dependent manner. These results suggest that red beet root has considerable potential as a functional food ingredient with antioxidative and anti-inflammatory effects.

Antioxidant and anti-inflammatory activities of water extracts and ethanol extracts from Portulaca oleracea L. (쇠비름 물, 에탄올 추출물의 항산화 및 항염증 활성)

  • Kim, Dong-Gyu;Shin, Jung-Hye;Kang, Min-Jung
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Portulaca oleracea L., a species of Portulacaceae, is ubiquitous. It is a well-known traditional Chinese medicine for removing heat, counteracting toxicity, cooling blood, and maintaining hemostasia; it is also used as antidysentery agent. This study investigated the anti-oxidative and anti-inflammatory activities of water and ethanol extracts from P. oleracea. The total polyphenol content ($21.08{\pm}0.03mg\;GAE/g$) and total flavonoid content ($5.45{\pm}0.76mg\;QE/g$) of the ethanolic extracts were higher than those of the water extracts. The antioxidative activities were determined by evaluating the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and by the ferric reducing antioxidant potential (FRAP) assay. The ABTS radical scavenging activity of the water extract (75.53%) was higher in those of the water extract (67.03%) at concentration of $1,000{\mu}g/mL$. The DPPH radical scavenging activity and FRAP of the ethanol extract were higher than those of the water extract. We also investigated the anti-inflammatory activity of the P. oleracea extracts in LPS-stimulated Raw 264.7 cells. The production levels of nitric oxide (NO) and reactive oxygen species (ROS) significantly decreased with an increasing concentration of the extract. The expression levels of pro-inflammatory cytokines (tumor necrosis faction (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6) were significantly lower in the ethanol extract than in the LPS alone treatment group. Based on these results, ethanolic extract from P. oleracea could be an effective antioxidant and anti-inflammatory agent.

Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves (건조방법에 따른 미선나무 잎의 항산화 및 항염증 효과)

  • Chang, Seong Jun;Jeon, Nam Bae;Park, Joo Won;Jang, Tae Won;Jeong, Jin Boo;Park, Jae Ho
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In this study, we evaluated the antioxidant activity and anti-inflammatory effects of Abeliophyllum distichum (A. distichum) leaves that were prepared via air-drying. Fresh and air-dried A. distichum leaves were examined via 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assay and measurements of the reducing power. The suppression effects on inflammation of the leaves were analyzed by a western blot and RT-PCR on LPS-induced RAW 264.7 cells. As a result, the antioxidant activity of the fresh leaves was found to be more effective than that of the air-dried leaves. Also, the fresh leaves were more effective in suppressing the protein and mRNA levels of iNOS and COX-2 than the air-dried leaves, thereby indicating the better anti-inflammatory effects. In addition, the contents of phenolic compounds and acteoside were analyzed by high-performance liquid chromatography (HPLC). The results showed that the acteoside content decreased with the use of the air-drying method, while there was no change in the content of phenolic compounds. Therefore, this study indicated that fresh A. distichum leaves potential antioxidant and suppression activities of various factors that are involved in the production of NO, which were found to be better than those of air-dried A. distichum leaves. These biological activities were also found to be independent of the content of phonolic compounds and were assumed to be directly or indirectly related to the content of acteoside.

Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 유형에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1164-1168
    • /
    • 2011
  • This study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in soils (6 sites for immatured paddy, 9 sites for normal paddy, and 5 sites for sandy paddy) in Gyeongnam Province. The soil microbial biomass carbon content in normal and sandy paddy were 1,235 and $441mg\;kg^{-1}$, respectively, showing the soil microbial biomass carbon content in normal paddy was higher than that in sandy paddy. The soil organic matter contents $33g\;kg^{-1}$ of immatured and normal paddy were higher than sandy paddy $18g\;kg^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in normal paddy were significantly higher than those in sandy paddy (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation.

Lipids from the rhizome of Cnidium officinalis Makino (천궁으로부터 lipid 의 분리 동정)

  • Kim, Hyoung-Geun;Jeon, Hyeong-Ju;Nguyen, Trong Nguyen;Lee, Dae Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.343-349
    • /
    • 2021
  • The rhizomes of Cnidium officinalis were extracted in aqueous MeOH, and the concentrate was fractionated via systematic solvent fractionation to EtOAc, n-BuOH, and aqueous fractions. The repeated column chromatography of EtOAc and n-BuOH fractions using silica gel, octadecyl silica gel, and Sephadex LH-20 as stationary phase to afford five lipids. They were identified to be methyl linoleate (1), linoleic aicd (2) 6-linoleoyl-𝛼-D-glucopyranosyl 𝛽-D-fructofuranoside (3), 1-linolenoyl-3-(𝛼-D-galactopyranosyl (1→6)-𝛽-D-galactopyranosyl) glycerol (4), and 1-linoleoyl-3-(𝛼-D-galactopyranosyl (1→6)-𝛽-D-galactopyranosyl) glycerol (5) on the basis of spectroscopic data such as IR, MS, and Nuclear magnetic resonance (NMR). Compounds 1 and 3-5 were isolated for the first time from this plant in this study. The NMR data of fatty acids 1 and 2 reported in literatures are different each other. Authors identified the NMR data without ambiguity. Compound 3, a conjugate of sucrose and fatty acid, and compounds 4 and 5, digalactosyl monoglyceride, are very rarely occurred in natural source. Through the immune enhancement and anticancer activity of the reported lipid compounds, the potential as various pharmacologically active materials of Cnidium officinalis rhizome can be expected.

Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression (보골지 추출물이 파골세포 분화 및 골흡수 관련 유전자 발현에 미치는 영향)

  • Ryu, Gwang-hyun;Kim, Eom Ji;Kim, Minsun;Kim, Jae-Hyun;Lee, Yujin;Jin, Dae-hwan;Sohn, Youngjoo;Jung, Hyuk-Sang
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.140-150
    • /
    • 2021
  • Objectives : The increase of osteoclasts could cause osteoporosis and bone-related diseases. Also, the inhibition of osteoclast differentiation is important in treating bone-related diseases. Traditionally, Psoraleae Semen has been used for geriatric diseases, aging and musculoskeletal diseases. The purpose of this study is to investigate the effect of Psoraleae Semen ethanol extract (PS) on osteoclast differentiation and its function. Methods : To confirm the effect of PS on osteoclastogenesis and bone resorption activity, various levels of concentrations of PS (5, 10, 20 and 40 ㎍/ml) were tested on RAW 264.7 cells cultured with RANKL. We measured tartarate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity, pit formation and F-actin ring formation. The expressions of nuclear factor of activated T-cells (NFATc1) and c-Fos were confirmed through western blot and reverse transcription- polymerase chain reaction (RT-PCR). Also, the expression of bone resorption and fusion-related genes in osteoclast was confirmed by RT-PCR. Results : PS decreased the number of TRAP-positive cells and the TRAP activity. In addition, PS significantly inhibited the formation of pit and F-actin ring. Furthermore, PS decreased the expression of osteoclast related genes. Conclusions : PS inhibits osteoclast differentiation and bone resorption ability through inhibition of the expression of osteoclast-related genes. This indicates that PS may be a potential therapeutic agent to osteoporosis by suppressing osteoclastogenesis.

The Effects of Taeksa-tang on Blood Lipid Profile and Anti Oxidation (택사탕의 항산화와 혈중지질에 대한 효과)

  • Lee, Yun-Jin;Lee, Eun-Byeol;Kim, Hyeon-Ji;Yang, Doo-Hwa;Kim, Young-Jun;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Objectives We evaluated the improving effects of Taeksa-tang (TST) using 3T3-L1 cells and C57BL/6 mice were fed on a high-fat diet. Methods The anti-radical activities of TST were studied using 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid). The content of total polyphenol was measured using Folin-Ciocalteu reagent, whereas aluminum chloride colorimetric method was used for the content of total flavonoid. Moreover, the factors related to lipid profile and the protein expressions such as 𝛽-oxidation and anti-oxidant enzyme were analyzed using serum and western blotting of 3T3-L1 cells. Additionally, we examined lipolysis through glycerol appearance in mouse adipose tissue. Results TST treatment showed strong free radical scavenging activities with half maximal inhibitory concentration and the presence of a amount of total polyphenol and total flavonoid. TST treatment significantly increased factors related to 𝛽-oxidation such as carnitine palmitoyl transferase-1 and uncoupling protein 2 via the phosphorlyation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK). Moreover, the protein expressions of anti-oxidant enzyme and lipolysis were significantly elevated by TST administration. In addition, TST supplementation lowered serum malondialdehyde, triglyceride, and total cholesterol levels compared with the control group. Taken together, these data suggest that TST treatment regulated lipid parameters via the increase of 𝛽-oxidation by LKB1-AMPK signaling pathway. Conclusions TST may have a potential remedy in the prevention and treatment of obesity. Therefore, this study may provide the scientific basis for TST use.

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root (하늘타리(Trichosanthes kirilowii Maxim.) 뿌리 에탄올 추출물의 3T3-L1 지방세포 분화 억제 융합연구)

  • Kim, Sung Ok;Jeung, Ji-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.

Development of a Hydrogen Peroxide Sensor Based on Palladium and Copper Electroplated Laser Induced Graphene Electrode (PdCu를 전기 도금한 레이저 유도 그래핀 전극 기반의 과산화수소 측정 센서 개발)

  • Park, Daehan;Han, Ji-Hoon;Kim, Taeheon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1626-1632
    • /
    • 2018
  • In this paper, we describe the fabrication and characterization of a hydrogen peroxide ($H_2O_2$) sensor based on palladium and copper (PdCu) electroplated laser induced graphene (LIG) electrodes. $CO_2$ laser was used to form LIG electrodes on a PI film. This fabrication method allows simple control of the LIG electrode size and shape. The PdCu was electrochemically deposited on the LIG electrodes to improve the electrocatalytic reaction with $H_2O_2$. The electrochemical performance of this sensor was evaluated in terms of selectivity, sensitivity, and linearity. The physical characterization of this sensor was conducted using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), which confirmed that PdCu was formed on the laser induced graphene electrode. In order to increase the sensor sensitivity, the Pd:Cu ratio of the electroplated PdCu was varied to five different values and the condition of highest amperometric current at an identical of $H_2O_2$ concentration was chosen among them. The resulting amperometric current was highest when the ratio of Pd:Cu was 7:3 and this Pd;Cu ratio was employed in the sensor fabrication. The fabricated PdCu/LIG electrode based $H_2O_2$ sensor exhibited a sensitivity of $139.4{\mu}A/mM{\cdot}cm^2$, a broad linear range between 0 mM and 16 mM of $H_2O_2$ concentrations at applied potential of -0.15 V, and high reproducibility (RSD = 2.6%). The selectivity of the fabricated sensors was also evaluated by applying ascorbic acid, glucose, and lactose separately onto the sensor in order to see if the sensor ourput is affected by one of them and the sensor output was not affected. In conclusion, the proposed PdCu/LIG electrode based $H_2O_2$ sensor seems to be suitable $H_2O_2$ sensor in various applications.