• 제목/요약/키워드: Potential Probiotic

검색결과 253건 처리시간 0.029초

In vivo Antimutagenicity of Dadih Probiotic Bacteria towards Trp-P1

  • Surono, Ingrid S.;Pato, Usman;Koesnandar, Koesnandar;Hosono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.119-123
    • /
    • 2009
  • In vitro acid- and bile-tolerant lactic acid bacteria isolated and identified from Indonesian traditional fermented milk dadih might be considered as potential probiotic strains after further characterization with animal models, especially for their therapeutic properties. Five dadih lactic bacteria isolates each had moderate survival rate for 2 h at pH 2.0, as well as bile tolerance. The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates originated from Bukit Tinggi, West Sumatra, especially their in vivo antimutagenic property. Milk cultured with Enterococcus faecium IS-27526 significantly lowered fecal mutagenicity of rats as compared to the control group, skim milk, and milk cultured with L. plantarum IS-20506. These results suggest that Enterococcus faecium IS-27526 may serve as a potential probiotic strain with its antimutagenicity.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

  • Kapse, N.G.;Engineer, A.S.;Gowdaman, V.;Wagh, S.;Dhakephalkar, P.K.
    • 한국미생물·생명공학회지
    • /
    • 제46권4호
    • /
    • pp.334-345
    • /
    • 2018
  • Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

Preparation of Smart Probiotic Solid Lipid Nanoparticles (SLN) for Target Controlled Nanofood

  • Kim, Dong-Myung
    • Journal of Dairy Science and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.5-10
    • /
    • 2007
  • Ultrasonication was employed to prepare solid lipid nanoparticles (SLN) for smart probiotic nanoparticles as a nanofood. The model probiotic material, lactocin from Lactobacillus plantarum (CBT-LP2), was incorporated into SLN. The CBT-LP2 loaded SLN (CBT-LP2-SLN) were spherical in the photograph of scanning electron microscope (SEM). The particle size measured by laser diffraction (LD) was found to be $97.3{\pm}8.2nm$. Zeta potential analyzer suggested the zeta potential of LP-SLN was $-29.36{\pm}3.68$ mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of nanofood was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P>0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded probiotic material.

  • PDF

Probiotic 미생물 검사에 사용되는 다양한 방법들에 대한 현황과 향후 전망 (Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms)

  • 김동현;김홍석;정다나;천정환;김현숙;김영지;강일병;이수경;송광영;박진형;장호석;서건호
    • Journal of Dairy Science and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.203-216
    • /
    • 2016
  • 지난 수십 년 동안 행복과 건강에 있어서 식품의 긍정적인 역할에 대한 소비자들의 관심과 인식의 증가 등의 이유로 기능성 식품의 생산 방향으로 식품산업이 변화되어가고 있다. Probiotic 식품의 정의에 의하면, 소비자들의 건강에 도움을 줄 수 있는 충분한 양의 살아있는 미생물을 반드시 포함해야 된다고 규정하고 있다. 오늘날 많은 probiotic 식품들이 판매되고 있으며, 또한 다양한 probiotic 균주들은 상업적으로 이용되고 있다. 하지만, 미생물들의 실제적으로 잠재적인 능력을 어떻게 평가하는 것은 매우 관심을 가지는 부분이다. 왜냐하면 최근 관련 문헌의 검사에서도 알 수 있듯이, probiotic 관련 연구가 급속하게 증가하고 있기에 더욱더 이 부분은 중요하게 인식되어지고 있다. 비록 대부분의 probiotic 미생물들은 식품 또는 공생세균으로서 일반적으로 안전하다고 여겨지고 있지만, 그 외의 재료들에서 얻은 probiotics는 법적인 규제와 안전문제에 대한 우려가 더욱더 증가되고 있는 것은 사실이다. Probiotic으로서 잠재력을 가진 균주들은 in vitro 또는 in vivo 검사를 통해서 선별되어질 수 있다. 예를 들면, 위장 또는 담즙과 같은 산성의 조건에서도 생존능력은 간단한 실험을 통해서 평가될 수 있으며, 또는 면역 활성, 신진대사 기능 또는 장-뇌 상호작용과 같은 복잡한 숙주 기능에서도 영향력의 평가가 가능하게 이루어질 수 있다. 인간의 건강 증진을 위해서는 반드시 고려되어야 하는 것은 궁극적으로 인간을 대상으로 진행되는 임상시험이지만, 지금까지 긍정적인 결과를 나타내는 연구를 통해서 밝혀진 소수의 균주들만이 법적으로 건강 기능성 강조표시(health claim)를 획득할 수 있었다. 따라서 현재 probiotics라고 규정하는데 이용되는 검사방법들의 유효성에 대한 관심이 증가하고 있는 것이 사실이다. 따라서 본 총설논문에서 probiotics의 선별에 이용되는 가장 일반적인 방법과 이들 방법들의 장점 및 한계성에 관해서 자세하게 설명하였다. 더 나아가서, 최근에 omics 기술의 출현은 probiotics의 생물현상을 새롭게 이해하는데 큰 도움으로 주고 있으며, 결국 omics 기술은 probiotics와 같은 다양한 미생물들을 연구하고 선별하는데 새로운 방법으로 이용될 수 있을 것이다. 하지만 여기에 대한 추가적인 연구들은 반드시 진행되어야 할 것이다.

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

인체분변으로부터 분리한 유산균 Lactobacillus pentosus Miny-148의 생균제 특성 연구 (Probiotic Property of Lactobacillus pentosus Miny-148 Isolated from Human Feces)

  • 정민영;박용하;김현수;부하령;장영효
    • 미생물학회지
    • /
    • 제45권2호
    • /
    • pp.177-184
    • /
    • 2009
  • 우수한 생균제를 개발하기 위하여 안전성이 알려진 유산균을 대상으로 인체의 분변으로부터 300여 균주를 분리하고 내산성, 내담즙성, 내열성, 항균력, 항암 및 항바이러스 효과를 가지는 균주들을 선발하여 생균제 특성을 나타내는지를 알아보기 위해 본 실험을 수행하였다. 인체에서 분리한 여러 균주 중 Miny-148 균주는 낮은 pH 및 높은 담즙산에 대한 내성, 열처리에 대한 열안정성을 지녀 기초적인 probiotic 특성을 가진 균주로 선발되어, Lactobacillus pentosus (99.9% 상동성)로 동정되었다. 항균력 실험에서 Escherichia coli O157:H7을 비롯한 Shigella flexneri, Bacillus anthracis, Staphylococcus aureus, E. coli, Vibrio cholerae, V. vulnificus, Salmonella typhimurium, 그리고 및 methicillin-resistant S. aureus (MRSA) 균주 8종 등 총 16종의 병원성세균을 억제하였다. 또한 Miny-148은 결장암 세포인 HT-29 cell을 억제하였을 뿐 아니라, transmissible gastroenteritis virus의 생육을 저해하여 세포변성 억제효과를 가진 우수한 probiotic 특성을 지닌 균주로 분석되었다.

Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces

  • Ngamlak Foongsawat;Sirinthorn Sunthornthummas;Kwannan Nantavisai;Komwit Surachat;Achariya Rangsiruji;Siriruk Sarawaneeyaruk;Kedvadee Insian;Sirapan Sukontasing;Nuttika Suwannasai;Onanong Pringsulaka
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.685-702
    • /
    • 2023
  • Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.

Acute Oral Toxicity and Pathogenicity of a Potential Probiotic Bacillus sp. A9184 Isolated from Soybean Paste

  • Lim, Jong-Hwan;Park, Byung-Kwon;Kim, Myoung-Seok;Rhee, Man-Hee;Park, Seung-Chun;Yun, Hyo-In
    • Toxicological Research
    • /
    • 제20권4호
    • /
    • pp.359-363
    • /
    • 2004
  • This study provides more information about the potential toxicological risk of Bacillus sp. A9184 isolated from soybean paste. The evaluation was based on the guidelines of acute oral toxicity/pathogenicity for microbial pesticide and was to get more comprehensive understanding on the acute toxicity of the potential probiotic in Sprgue-Dawley rats. No dead animal was observed in rats after single oral administration with bacteria ($10^8$ CFU per animal). There were neither no treatment-related changes in clinical signs, nor changes in body weight and body temperature as com-pared with the untreated group. All tested animal showed the increase in body weight with time. The results obtained in this study suggest that the potential probiotic, Bacillus sp. A9184, is non-toxic for rat.

Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink

  • Hye Ji Jang;Na-Kyoung Lee;Hyun-Dong Paik
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.255-268
    • /
    • 2024
  • Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.