• 제목/요약/키워드: Potential Core Length

검색결과 48건 처리시간 0.031초

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

The Role of Core Needle Biopsy for the Evaluation of Thyroid Nodules with Suspicious Ultrasound Features

  • Sae Rom Chung;Jung Hwan Baek;Young Jun Choi;Tae-Yon Sung;Dong Eun Song;Tae Yong Kim;Jeong Hyun Lee
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.158-165
    • /
    • 2019
  • Objective: Recent studies demonstrated that core needle biopsy (CNB) can effectively reduce the possibility of inconclusive results and prevent unnecessary diagnostic surgery. However, the effectiveness of CNB in patients with suspicious thyroid nodules has not been fully evaluated. This prospective study aimed to determine the potential of CNB to assess thyroid nodules with suspicious ultrasound (US) features. Materials and Methods: Patients undergoing CNB for thyroid nodules with suspicious features on US were enrolled between May and August 2016. Diagnostic performance and the incidence of non-diagnostic results, inconclusive results, conclusive results, malignancy, unnecessary surgery, and complications were analyzed. Subgroup analysis according to nodule size was performed. The risk factors associated with inconclusive results were evaluated using multivariate logistic regression analysis. Results: A total of 93 patients (102 thyroid nodules) were evaluated. All samples obtained from CNB were adequate for diagnosis. Inconclusive results were seen in 12.7% of cases. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for diagnosis of malignancy were 93.8%, 100%, 100%, 78.9%, and 95%, respectively. None of the patients underwent unnecessary surgery. The diagnostic performance was not significantly different according to nodule size. On multivariate logistic regression analysis, larger nodule size and shorter needle length were independent risk factors associated with inconclusive results. Conclusion: Samples obtained by CNB were sufficient for diagnosis in all cases and resulted in high diagnostic values and conclusive results in the evaluation of suspicious thyroid nodules. These findings indicated that CNB is a promising diagnostic tool for suspicious thyroid nodules.

음향여기된 축대칭 충돌제트의 유동 특성 (Flow Characteristics of Acoustically Excited Axisymmetric Impinging Jet)

  • 조형희;이창호
    • 한국추진공학회지
    • /
    • 제1권2호
    • /
    • pp.32-40
    • /
    • 1997
  • 무제트초기의 불안정성이 하류에서의 와류성장에 영향을 끼치기 때문에 와류의 조절에 의한 충돌면에의 유동 및 열전달 효과의 변화를 기대할 수 있게 된다. 따라서 본 논문에서는 FFT를 이용하므로써 제트의 와류생성과 병합의 주파수 특성을 연구하고 이에 적절한 주파수로 와류를 여기하여 자유제트의 유동특성 변화와 충돌제트의 유동 및 열전달 특성을 고찰하였다. 음향여기를 하게되면 제트주위의 와류형성을 조절할 수 있게 되는데, 자연적으로 형성되는 와류의 주파수(와류의 고유주파수)와 관련하여 여기해준 주파수성분 자체보다는 여기주파수의 부조화성분이 중요한 역할을 하게 된다. 음향여기를 통해 와류의 병합이 촉진되면 중심부에서의 난류강도가 증가하게 되고 억제하면 난류강도는 감소하게 된다. 따라서 와류병합을 촉진하면 가까운 거리에서는 높은 난류강도로 인해 정체점에서의 열전달이 증가하지만 멀어질수록 포텐션코어길이의 감소로 오히려 낮은 결과를 나타내었다. 이와 반대로 와류병합을 억제하면 중심부에서의 낮은 난류강도로 가까운 거리에서는 열전달이 감소하였으나 포텐셜코어길이가 길어지면서 먼거리에서는 열전달에 효과적이었다.

  • PDF

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji;Wanzhi, Tu;Chenwen, Huang;Ziyang, Chen;Xinyue, Ren;Bingqing, He;Xiaoyan, Ding;Yuelei, Chen;Xin, Xie
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.923-934
    • /
    • 2022
  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작 (Design and Fabrication of an LPVT Embedded in a GIS Spacer)

  • 박성관;이경렬;김남훈;김철환;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

동축이중원관 분류에 있어서의 유동 특성에 관한 연구 (A Study on the Flow Characteristics in Double Coaxial Pipe Jets)

  • 신창환;김경훈
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF