• Title/Summary/Keyword: Potassium persulfate

Search Result 57, Processing Time 0.021 seconds

Synthesis and Characterization of Thermo Sensitive Poly(styrene-co-N-isopropylacrylamide) Microgels (열 감응성 Poly(styrene-co-N-isopropylacrylamide) 마이크로겔의 합성 및 특성)

  • Cho, Suk Hyeong;Kim, Kong Soo;Jung, Tea Uk
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • Core-shell Poly(styrene-co-N-isopropylacrylamide) (poly(St-co-NIPAm) was prepared by soap-free emulsion polymerization of styrene (St) and N-isopropylacrylamide (NIPAm) in aqueous solution with potassium persulfate (KPS) as an initiator. The effects of St/NIPAm ratio, concentrations of monomer and crosslinker were studied. Also, Thermo sensitivity of microgels prepared was investigated. Particle size of microgels increased with increasing mol ratio of NIPAm to styrene. Transmittance of the microgel dispersion decreased rapidly when heated above a low critical solution temperature (near $32{\sim}34^{\circ}C$, cloud point). Swelling ratio of the microgel increased with increasing of the concentration of monomer (NIPAm) and decreased proportional to the concentration of crosslinker.

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.

Preparation and Resistant Property of Acrylic Adhesives for Automobiles Protection (자동차 보호용 아크릴 점착제의 제조 및 내성조사)

  • Hahm, Hyun-Sik;Park, Ji-Young;Ahn, Sung-Hwan;Kim, Song-Hyoung;Hong, Suk-Young;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2006
  • Acrylic adhesives for automobiles protection were prepared by emulsion polymerization. Monomers used were n-butyl acrylate(BA), acrylonitrile (AN), butyl methacrylate(BMA), glycidyl methacrylate(GMA), and acrylic acid (AA). Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was kept at 200 rpm. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, when each 0.03 mole of GMA and AA was introduced, the adhesion properties and various above mentioned resistances of the prepared adhesives were satisfied the standard for automobiles.

Automated On-Line Digestion System for the Determination of Total Phosphorus (총 인 분석을 위한 자동 전처리 시스템)

  • 정형근;조영일;김범식;박주형
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • An on-line digestion system based on the flow injection analysis technique was presented for the determination of total phosphorus. The system converts condensed and organic phosphoruses into orthophosphate that can be analyzed spectrophotometically. The reaction between orthophosphate and ammonium molybdate in a strong acid medium forms the yellow complex of phosphomolybdate which is next reduced to a molybdic blue complex by stannous chloride. The quantitation of orthophosphate is based on the absorbance of the molybdic blue. To determine total phosphorus, the digestion system was installed between the sample injector and the reaction coil with the added lines of digestion solution(potassium persulfate+sulfuric acid) and the $H_2O$ carrier. The system has shown that the digestion efficiencies were greater than 95% for the typical condensed and organic phosphoruses. When tripolyphosphate standards were used, the calibration data showed that the linear dynamic range extended to a concentration of 1.5ppm with the detection limit of 25ppb total phosphorus. The typical relative standard deviation was less than 2%. The proposed system was successfully applied to lake water, wastewater, and streamwater. The analytical variables such as digestion efficiency, analysis time, and reproducibility were evaluated and compared with the manual digestion method.

  • PDF

In situ synthesis of acrylic emulsion for improvement of anti corrosion property on steel plate (금속 코팅용 아크릴 올리고머 에멀젼의 합성에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jin, Seok-Hwan;Park, Shin-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.485-494
    • /
    • 2008
  • The acrylic coating emulsions were prepared by the emulsion polymerization to protect the surface of steel plate from the corrosion chemicals like acid, base and salt water. MMA(methyl methacrylate), styrene, BA(butyl acrylate), and 2-HEMA(2-hydroxyethyl methacrylate) were used as monomer. KPS(potassium persulfate) and SBS(sodium bisulfite) as redox initiator and SDBS(sodium dodecylbenzene sulfonate) as emulsifier were used on the emulsion polymerization reaction. The most stable in-situ coating was obtained when 10% of MMA was added. Both particle size and quantity in emulsion were decreased as increasing the mount of SDBS. the most stable prepared coating emulsion with polyisocyanate crosslinker showed very high anticorrosion properties on the coated steel layer to salt water, whereas no significant improvement of anticorrosion property to acdic and basic condition it showed.

Preparation and Characteristics of Acrylic Removable Protective Coatings (박리형 아크릴 보호코팅제의 제조 및 특성)

  • Hahm, Hyun-Sik;Park, Ji-Young;Hwang, Jae-Young;Ahn, Sung-Hwan;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.332-338
    • /
    • 2005
  • This study was conducted to prepare acrylic removable protective coatings by emulsion polymerization. Monomers used were n-butyl acrylate, acrylonitrile, butyl methacrylate. Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was 200 rpm. Tensile strength, extension, peel strength, viscosity, and solid contents of the synthesized coatings were examined. The coatings prepared with BA:AN = 60:20 (in weight ratio) satisfied the standard for automobile in terms of extension and peel strength. When the concentration of BMA was in a range of $18{\sim}23$ wt%, the prepared coatings satisfied the standard for automobile in terms of peel strength and water resistance.

Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant (계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Modified Carrageenan. 6. Crosslinked Graft Copolymer of Methacrylic Acid and kappa-Carrageenan as a Novel Superabsorbent Hydrogel with Low Salt- and High pH-Sensitivity

  • Pourjavadi A.;Harzandi A. M.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.483-490
    • /
    • 2005
  • A novel, polysaccharide-based, superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto kappa-carrageenan ($_{k}C$), using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for $_{k}C$­g-polymethacrylic acid ($_{k}C$-g-PMAA) formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The effect of grafting variables, including MBA, MAA, and APS concentration, was systematically optimized to achieve a hydrogel with the maximum possible swelling capacity. The swelling kinetics in distilled water and various salt solutions were preliminarily investigated. Absorbency in aqueous salt solutions of lithium chloride, sodium chloride, potassium chloride, calcium chloride, and aluminum chloride indicated that the swelling capacity decreased with increased ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. The swelling of super absorbing hydrogels was measured in solutions with pH ranging from 1 to 13. In addition, the pH reversibility and on-off switching behavior, at pH levels of 3.0 and 8.0, give the synthesized hydrogels great potential as an excellent candidate for the controlled delivery of bioactive agents.

Grafting of Glycidyl Methacrylate upon Coralline Hydroxyapatite in Conjugation with Demineralized Bone Matrix Using Redox Initiating System

  • Murugan, R.;Rao, K.Panduranga
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.14-18
    • /
    • 2003
  • Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 $^{\circ}C$ and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 $cm^{-1}$ / and ester carbonyl group at 1731 $cm^{-1}$ / of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.