• Title/Summary/Keyword: Postharvest Treatment

Search Result 170, Processing Time 0.034 seconds

Use of Ionizing Radiation as a Phytosanitary Treatment for Postharvest Disease Control

  • Jeong, Rae-Dong
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • Postharvest diseases cause considerable losses to harvested fruits and vegetables worldwide. Fresh produce suspected of harboring postharvest disease must be treated to control any pathogens present. Although there are various treatments to control postharvest losses by pathogens, the current community is eager to take safer and more eco-friendly alternatives to help with human health and reduce environmental risks. Ionizing irradiation is a promising phytosanitary treatment that has a significant potential to control postharvest diseases in use worldwide. Although almost 19000 metric tons of sweet potatoes and various fruits are irradiated each year in six countries to control postharvest disease, irradiation continues to be a debate, with slow acceptance by industries. Irradiation alone is not effective as a fungicide, and an over dose affects the physical properties of irradiated products. A combination of irradiation with other treatments such as heating, biocontrol agents, chlorination, and nano Ag particles is to enhance their effectiveness. Challenges to the use of phytosanitary irradiation are an avoidance of irradiated postharvest and cost of the irradiation facilities, and thus consumers still need to be educated on the principles and benefits of irradiation and prepare an optimum economy of scale for commercial use. In this review, we evaluated the current phytosanitary irradiation, and combination with various other treatments to minimize the postharvest losses.

Effect of the Combination Hot Water - Calcium Chloride on the In Vitro Growth of Colletotrichum gloeosporioides and the Postharvest Quality of Infected Papaya

  • Ayon-Reyna, Lidia Elena;Lopez-Valenzuela, Jose Angel;Delgado-Vargas, Francisco;Lopez-Lopez, Martha Edith;Molina-Corral, Francisco Javier;Carrillo-Lopez, Armando;Vega-Garcia, Misael Odin
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.572-581
    • /
    • 2017
  • Anthracnose of papaya fruit caused by the fungus Colletotrichum gloeosporioides is one of the most economically important postharvest diseases. Hot water immersion (HW) and calcium chloride (Ca) treatments have been used to control papaya postharvest diseases; however, the effect of the combination HW-Ca on the pathogen growth and the development of the disease in infected papaya fruit has been scarcely studied. The aim of this study was to evaluate the effect of the HW-Ca treatment on the in vitro growth of C. gloesporioides conidia and the quality of infected papaya. In vitro, the HW-Ca treated conidia showed reduced mycelial growth and germination. In vivo, the HW-Ca treatment of infected papaya delayed for 5 days the onset of the anthracnose symptoms and improved the papaya postharvest quality. The combined treatment HW-Ca was better than any of the individual treatments to inhibit the in vitro development of C. gloeosporioides and to reduce the negative effects of papaya anthracnose.

Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts (새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향)

  • Chang, Eun Ha;Lee, Ji Hyun;Choi, Ji Weon;Shin, Il Sheob;Hong, Yoon Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

Review of Quality Changes of Postharvest Fruits and Packaging Applications to Extend Their Shelf Life (국내 과실 선도유지 특성 및 포장기술 고찰)

  • Lee, Youn-Suk;Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • In response to the continuous changes in current consumer demands and market trends for postharvest produces, the functional application for agricultural packaging is becoming increasely significant. This paper focuses on the overview of important changes in physical and chemical status related to postharvest physiology and applications of the functional packaging materials for maintaining the freshness of fruits after harvest. During postharvest treatment and storage periods, fresh fruits undergoes the ripening process in quality attributes of the fruit such as major changes of texture, color, and flavor. Major fruit packaging technologies are concerned with correct gas permeable film and functions of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness. Application guidelines for the functional packaging in fresh produces were studied.

  • PDF

Effect of Burkholderia contaminans on Postharvest Diseases and Induced Resistance of Strawberry Fruits

  • Wang, Xiaoran;Shi, Junfeng;Wang, Rufu
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.403-411
    • /
    • 2018
  • This study takes strawberry-fruits as the test material and discusses the effect of Burkholderia contaminans B-1 on preventing postharvest diseases and inducing resistance-related substances in strawberry-fruits. Soaking and wound inoculating is performed to analyze the inhibitory effects of different treatment solutions on the gray mold of postharvest strawberry-fruits. The count of antagonistic bacteria colonies in the wound is found, and the dynamic growth of antagonistic bacteria and the pathogenic fungus is observed by electron microscopy. The results indicated that, either by soaking/wound-inoculating, the fermentation and suspension of antagonistic bacteria significantly reduced the incidence of postharvest diseases of strawberry-fruits. With wound inoculation, the inhibition rate of antagonist fermentation and suspension ($1{\times}10^{10}cfu/ml$) respectively reached 77.4% and 66.7%. It also led to a significant increase in the activity of resistance-related enzymes, i.e., phenylalanine ammonia lyase (PAL), 4-coumarate coenzyme A ligase (4CL), cinnamate-4-hydroxylase (C4H) and chalcone isomerase (CHI). On 1 d and 2 d post-treatment, the activity of 4CL was respectively 3.78 and 6.1 times of the control, and on 5 d, the activity of PAL was increased by 4.47 times the control. The treatment of antagonistic bacteria delayed the peaking of cinnamyl-alcohol dehydrogenase (CAD) activity and promoted the accumulation of lignin and total phenols. The antagonistic bacteria could be well colonized in the wounds. On 4-5 d post-inoculation, the count of colonies was $10^8$ times of that upon inoculation. Electronmicroscopy indicated that the antagonistic bacteria delayed the germination of pathogenic spores in the wounds, and inhibited further elongations of the mycelia.

Effect of postharvest CO2 treatment on the quality of the 'Gonji-7ho' oyster mushroom (Pleurotus ostreatus) during oriented polypropylene packaging and storage (수확 후 CO2처리가 느타리버섯 곤지7호의 OPP 포장 저장 중 품질에 미치는 영향)

  • Choi, Ji-Weon;Lee, Ji-Hyun;Kim, Chang-Kug;Shin, Il-Sub;Bae, Yeoung-Seuk
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.115-119
    • /
    • 2020
  • This study was conducted to investigate the effect of post-harvest CO2 treatment on the quality of the 'Gonji-7ho' oyster mushroom. The harvested mushrooms were pre-cooled at 3℃ for 1 day and placed in a gas-tight chamber with 0%, 30%, or 50% of CO2 concentration for 3 hours at 3℃. Next, 400 g of the oyster mushroom sample was packaged into 20-㎛ thick oriented polypropylene (OPP) film bags and stored at 4℃ for 21 days. Treatment with 30% of CO2 treatment maintained the highest stipe firmness of the oyster mushrooms during storage. The stipe lightness (CIE L) was the highest at 14 and 21 days, while the stipe yellowness (CIE b) was the lowest at 2 and 7 days of storage. Therefore, we concluded that the 30% CO2 treatment maintained the overall visual quality of the 'Gonji-7ho' oyster mushroom until 17 days of storage at 3℃. Our results suggest that the shelf life of 'Gonji-7ho' oyster mushroom could be extended by the postharvest application of 30% CO2 for 3 hours during low temperature storage.

Postharvest Procedures on Storage, Management and Utilization of Sweetpotato (고구마의 수확 후 관리현황과 개선방안)

  • Ahn Young-Sup;Jeong BC;Lee JS;Chung MN;Kim HS
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.10a
    • /
    • pp.36-41
    • /
    • 2004
  • Postharvest handling of sweetpotatoes is inevitable procedure for the maintenance, storage, management and utilization of high fresh quality of storage roots. It ranges in degree from simple lifting of roots, carrying them from field to storage house and immediate consumption after cooking, to sophisticated methods of curing, and storage under controlled conditions followed by processing into a high quality food products. Postharvest saleability, quality and nutritional value of roots and the presence or absence in roots of bitter, toxic furanoterpenoid phytoalexins or mycotoxins depends greatly on the degree and types of treatment to which produce is subjected. Climatic and soil conditions before harvest and contamination or attack by microorganisms or insect pests in the field may initiate or enhance subsequent postharvest deterioration. Careless postharvest handling can lead to both quantitative and qualitative losses which may be extremely high in some circumstances. Research has concentrated on the improvement of preharvest conditions to increase yield and lower decrease rates. However, such efforts are wasted unless they go hand in hand with others designed to reduce the high degree of loss associated with careless postharvest handling.

  • PDF

Change in the Quality of Apples Treated with Postharvest Fungicides under Different Storage Conditions (Postharvest 약제가 처리된 사과의 저장조건에 따른 품질변화)

  • Lee, Eun-Ju;Kim, Jang-Eok;Choe, Jong-Uk
    • Food Science and Preservation
    • /
    • v.2 no.2
    • /
    • pp.233-242
    • /
    • 1995
  • This study was conducted to determine the effects of storage conditions on apples treated with postharvest fungicides, benomyl and bitertanol. The fungicideds were applied to control Postharverst disease in apples during CA and cold storage. The stored Apple were tested monthly for weight loss, flesh firmness, titratable acidity, prix and free sugar. Relative to the control group, the pstharvest fungicide stoup had less disease. The fungicide treated apples stored in CA had a higher measured weight, better firmness and maintained acidity, prix and free sugar when compared to the control stoup monthly and after 200days. The fungicide treated apples in cold storage maintained their quality for 120days.

  • PDF

Survey and Controll of the Occurrence of Mycotoxins from Postharvest Cereals III. Control of Mycotoxin Producing Pathogens in Postharvest Cereals(Wheat, Bean, Corn) (수확후 곡물류에 발생하는 진균독소의 탐색과 방제 III. 수확후 곡물류(밀, 콩, 옥수수)에서 발생하는 진균독소균의 방제)

  • 백수봉;김은영;정일민;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.531-535
    • /
    • 1998
  • This study was conducted to test the effect of chitosan, grape fruit seed extracts(GFSE) and sodium hypochloride gas on the control of mycotoxin producing pathogens occurred kin postharvest grains. Among the treatments, sodium hypochloride gas showed the highest control effect on wheat, soybean and corn see maintained in natural conditions after postharvest and GFSE had a little control effect, but chitosan treatment had no effect. Sodium hypochloride gas exhibited the strongest control effect on the major mycotoxin producing pathogens such as Penicillium spp. Aspergillus spp. and Fusarium spp., whereas GFSE had a little control effect. Sodium hypochloride gas appeared to be effective when the grains were treated with this gas more than 24 hours.

  • PDF

The effects of CO2 treatment for freshness extension of Pleurotus eryngii (큰느타리버섯의 신선도 유지기간 연장을 위한 CO2 처리 효과)

  • Lee, Ji-Hyun;Choi, Ji-Weon;Hong, Yoon-Pyo;Choi, Hyun-Jin;Kim, Ji-Gang
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2014
  • King oyster mushrooms(Pleurotus eryngii) are the second biggest mushroom for exporting in Korea but their browning and soft rot is the main factors of claim during long distance transportation. Fresh king oyster mushrooms were treated with $CO_2$ at 30, 50% for 3 hours at $5^{\circ}C$ prior to storage at $20^{\circ}C$ and $5^{\circ}C$. There was no difference on respiration rate after $CO_2$ treatment. However exposure to $CO_2$ for 3h prior to MA packing maintained the firmness and delayed color(hunter L and b value) change of mushrooms during storage. Especially an incubation in high $CO_2$ at 30% significantly reduced soft rot and browning symptoms resulting in one week extension of shelf-life during storage at $5^{\circ}C$ compared to control and 50% $CO_2$ treatment.