• Title/Summary/Keyword: Post-buckling Analysis

Search Result 177, Processing Time 0.024 seconds

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF

Mechanical Characteristic Test of Architectural ETFE Film Membrane (크기최적화 이후에 나타나는 공간구조물의 후 좌굴 거동 변화에 대한 연구)

  • Lee, Sang-Jin;Jung, Ji-Myoung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.75-82
    • /
    • 2009
  • This paper investigates the variation of post-buckling behaviours of spatial structures after sizing optimization with linear assumptions. The mathematical programming technique is used to produce the optimum member size of spatial structures against external load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of structures are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The post-buckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge difference between the post buckling behaviours of the initial and optimized structures. Therefore, the stability of optimized spatial structures with linear assumption should be throughly checked by appropriate nonlinear analysis techniques. Finally, the present numerical results are provided as benchmark test suite for future study of large spatial structures.

  • PDF

Finite Element Post-buckling Analysis of Steel-Concrete Composite Column (철골-콘크리트 합성기둥의 후좌굴 거동에 관한 해석 연구)

  • Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.725-735
    • /
    • 2007
  • The local buckling strength and post-local buckling strength of thin steel plates in the steel-concrete composite column were evaluated by nonlinear finite element analyses. The proposed width-to-thickness limit ratio was based on elastic buckling analyses, in which the increased local buckling capacity of the plate due to the in-filled concrete was considered by the boundary conditions of the thin plate. Considering the initial imperfections and residual stresses, we determined the initial local buckling strength and post-local buckling strength of the thin plates with various width-to-thickness ratios. The formula to evaluate the compressive capacity of the steel-concrete composite column based on the effective width of the plate was proposed. For verification, values determined by the formula were compared with the experimental results.

Analytical Method for Elastoplastic Behavior of Truss element under Cyclic Axial Loading (반복 축 하중을 받는 트러스 요소의 탄소성 좌굴거동 해석기법에 관한 연구)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.377-387
    • /
    • 2008
  • The post-buckling behavior of slender members, such as the chord of truss structures generally implies extreme strength degradation. The buckling strength is usually determined as the performance of the compressed steel members, so it is important to understand the exact buckling behavior of a member in order to design the entire structure. A target analytical model is usually divided by beam or shell element when we simulate the buckling behavior of a compressed steel member such as atruss member. In this case, it is possible to accurately obtain the behavior, but such would be expensive and would require experience inanalysis even in monotonic loading. In this paper, we propose a consistent and convenient method to analyze the post-buckling behavior of elastoplastic compression members. The present methods are formulated to satisfy the second law of thermodynamics. Three numerical examples were tested to determine the validity of the proposed model in cyclic loading with comparable F.E.M results.

Finite Element Analysis on Buckling Pressure of Composite Pressure Hull (복합재 내압선체의 좌굴압력에 관한 유한요소해석)

  • Cho, J.R.;Jung, H.Y.;Kwon, J.H.;Choi, J.H.;Cho, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.212-213
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for URN 300. We predicted the buckling and post buckling analysis of composite laminated cylindrical shell and panel under external compression by using ABAQUS/Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have four different lamination patterns, [${\pm}{\Theta}$/0/90]$_{14s}$,[${\pm}{\Theta}_{14}$/$0_{14}$/$90_{14}$],[${\pm}$45/0/90]$_{18s}$ and [/0/90]$_{18s}$. At the result of this study, the optimized ply orientation angle is $75^{\circ}$. The critical load from experiment is 69% of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressure.

  • PDF

Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load (결합하중을 받는 임의단면 기둥의 좌굴후 해석)

  • Shin, Young-Jae;Chiba, Masakatsu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.323-329
    • /
    • 2002
  • This paper presents the application of the technique of differential transformation to the post-buckling problem of non-uniform cantilever column subjected to a combined load. Numerical calculations are carried out and compared with previously published results to validate the results of the present method. The results obtained by this method agree very well with those reported in the previous works. The results obtained by the present method are presented for both various non-uniform columns and loads.

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

A proposed set of popular limit-point buckling benchmark problems

  • Leahu-Aluas, Ion;Abed-Meraim, Farid
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.767-802
    • /
    • 2011
  • Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method (명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.535-546
    • /
    • 2011
  • In this paper, semi-rigid elasto-plastic post-buckling analysis of a space frame was performed using various explicit arc-length methods. Various explicit arc-length methodsand a large-deformation and small-strain elasto-plastic 3D space frame element with semi-rigid connections and plastic hinges were developed. This element can be appliedto both explicit and implicit numerical algorithms. In this study, the Dynamic Relaxation method was adopted in the predictor and corrector processesto formulate an explicit arc-length algorithm. The developed "explicit-predictor" or "explicit-corrector" were used in the elasto-plastic post-buckling analysis. The Eulerian equations for a beam-column with finite rotation, which considers the bowing effects, were adopted for the elastic system and extended to theinelastic system with a plastic hinge concept. The derived tangent stiffness matrix was asymmetrical due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. Semi-rigid elasto-plastic post-buckling analyses were carried out to demonstrate the potential of the developed explicit arc-length method and advanced space frame element in terms of accuracy and efficiency.