Browse > Article
http://dx.doi.org/10.12989/sem.2011.38.6.767

A proposed set of popular limit-point buckling benchmark problems  

Leahu-Aluas, Ion (LEM3, UMR CNRS 7239, Arts et Metiers ParisTech)
Abed-Meraim, Farid (LEM3, UMR CNRS 7239, Arts et Metiers ParisTech)
Publication Information
Structural Engineering and Mechanics / v.38, no.6, 2011 , pp. 767-802 More about this Journal
Abstract
Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.
Keywords
finite element; nonlinear analysis; limit-point buckling benchmarks; post-buckling; path-following strategy; large rotations;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Budiansky, B. (1974), "Theory of buckling and post-buckling behaviour of elastic structures", Adv. Appl. Mech., 14, 1-65.   DOI
2 Chen, Y.I. and Wu, G.Y. (2004), "A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique", Struct. Eng. Mech., 17, 113-140.   DOI
3 Cho, C., Park, H.C. and Lee, S.W. (1998), "Stability analysis using a geometrically nonlinear assumed strain solid shell element model", Finite Elem. Anal. Des., 29, 121-135.   DOI   ScienceOn
4 Chroscielewski, J., Makowski, J. and Stumpf, H. (1992), "Genuinely resultant shell finite elements accounting for geometric and material non-linearity", Int. J. Numer. Meth. Eng., 35, 63-94.   DOI
5 Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comput. Struct., 13, 55-62.   DOI   ScienceOn
6 DaDeppo, D.A. and Schmidt, R. (1975), "Instability of clamped-hinged circular arches subjected to a point load", J. Appl. Mech. Trans. ASME, 42, 894-896.   DOI
7 Eriksson, A., Pacoste, C. and Zdunek, A. (1999), "Numerical analysis of complex instability behaviour using incremental-iterative strategies", Comput. Meth. Appl. Mech. Eng., 179, 265-305.   DOI
8 Hauptmann, R. and Schweizerhof, K. (1998), "A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom", Int. J. Numer. Meth. Eng., 42, 49-69.   DOI   ScienceOn
9 Hitchings, D., Kamoulakos, A. and Davies, G.A.O. (1987), Linear Statics Benchmarks, National Agency for Finite Element Methods and Standards, Glasgow, UK.
10 Hutchinson, J.W. and Koiter, W.T. (1970), "Post-buckling theory", Appl. Mech. Rev., 23, 1353-1366.
11 Ibrahimbegovic, A. and Al Mikdad, M. (2000), "Quadratically convergent direct calculation of critical points for 3D structures undergoing finite rotations", Comput. Meth. Appl. Mech. Eng., 189, 107-120.   DOI   ScienceOn
12 Killpack, M. and Abed-Meraim, F. (2011), "Limit-point buckling analyses using solid, shell and solid-shell elements", J. Mech. Sci. Tech., 25, 1105-1117.   DOI
13 Kim, J.H. and Kim, Y.H. (2001), "A predictor-corrector method for structural nonlinear analysis", Comput. Meth. Appl. Mech. Eng., 191, 959-974.   DOI   ScienceOn
14 Kim, J.H. and Kim, Y.H. (2002), "A three-node C0 ANS element for geometrically non-linear structural analysis", Comput. Meth. Appl. Mech. Eng., 191, 4035-4059.   DOI   ScienceOn
15 Kim, K.D., Liu, G.Z. and Han, S.C. (2005), "A resultant 8-node solid-shell element for geometrically nonlinear analysis", Comput. Mech., 35, 315-331.   DOI   ScienceOn
16 Klinkel, S. and Wagner, W. (1997), "A geometrical non-linear brick element based on the EAS-method", Int. J. Numer. Meth. Eng., 40, 4529-4545.   DOI   ScienceOn
17 Koiter, W.T. (1945), "On the stability of elastic equilibrium", Ph.D. Thesis, Delft. English translation NASA Techn. Trans. F10, 1967.
18 Kouhia, R. and Mikkola, M. (1989), "Tracing the equilibrium path beyond simple critical points", Int. J. Numer. Meth. Eng., 28, 2923-2941.   DOI
19 Lee, S.L., Manuel, F.S. and Rossow, E.C. (1968), "Large deflection and stability of elastic frames", ASCE J. Eng. Mech. Div., 94, 521-533.
20 Legay, A. and Combescure, A. (2003), "Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS", Int. J. Numer. Meth. Eng., 57, 1299-1322.   DOI   ScienceOn
21 MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1, 3-20.   DOI   ScienceOn
22 Planinc, I. and Saje, M. (1999), "A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix", Comput. Meth. Appl. Mech. Eng., 169, 89- 105.   DOI
23 Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solids Struct., 15, 529-551.   DOI   ScienceOn
24 Prinja, N.K. and Clegg, R.A. (1993), Assembly Benchmark Tests for 3-D Beams and Shells Exhibiting Geometric Non-Linear Behaviour, NAFEMS, Glasgow, UK.
25 Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Element Analysis in Structural Mechanics (Eds. Wunderlich, W., Stein, E. and Bathe, K.J.), Springer-Verlag, New York.
26 Reese, S. (2007), "A large deformation solid-shell concept based on reduced integration with hourglass stabilization", Int. J. Numer. Meth. Eng., 69, 1671-1716.   DOI   ScienceOn
27 Schreyer, H. and Masur, E. (1966), "Buckling of shallow arches", J. Eng. Mech. Div.-ASCE, 92, 1-19.
28 Sharifi, P. and Popov, E.P. (1971), "Nonlinear buckling analysis of sandwich arches", J. Eng. Mech. Div.-ASCE, 97, 1397-1412.
29 Smolenski, W.M. (1999), "Statically and kinematically exact nonlinear theory of rods and its numerical verification", Comput. Meth. Appl. Mech. Eng., 178, 89-113.   DOI
30 Sze, K.Y., Liu, X.H. and Lo, S.H. (2004), "Popular benchmark problems for geometric nonlinear analysis of shells", Finite Elem. Anal. Des., 40, 1551-1569.   DOI   ScienceOn
31 Sze, K.Y. and Zheng, S.J. (2002), "A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses", Comput. Meth. Appl. Mech. Eng., 191, 1945-1966.   DOI   ScienceOn
32 Thompson, J.M.T. and Hunt, G.W. (1973), A General Theory of Elastic Stability, Wiley, New York.
33 Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
34 Voce, E. (1948), "The relation between the stress and strain for homogeneous deformation", J. Inst. Metals, 74, 537-562.
35 Wriggers, P. and Simo, J.C. (1990), "A general procedure for the direct computation of turning and bifurcation points", Int. J. Numer. Meth. Eng., 30, 155-176.   DOI
36 ABAQUS. (2007), Version 6.7 Documentation, Dassault Systemes Simulia Corp.
37 Wagner, W. and Wriggers, P. (1988), "A simple method for the calculation of post-critical branches", Eng. Comput., 5, 103-109.   DOI
38 Wardle, B.L. (2006), "The incorrect benchmark shell buckling solution", Proceedings of the 47th AIAA Structures, Dynamics, and Materials Conference, Newport RI, doc. 2028.
39 Wardle, B.L. (2008), "Solution to the incorrect benchmark shell-buckling problem", AIAA J., 46, 381-387.   DOI   ScienceOn
40 Weinitshke, H.J. (1985), "On the calculation of limit and bifurcation points in stability problems of elastic shells", Int. J. Solids Struct., 21, 79-95.   DOI   ScienceOn
41 Abed-Meraim, F. and Combescure, A. (2009), "An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis", Int. J. Numer. Meth. Eng., 80, 1640-1686.   DOI   ScienceOn
42 Abed-Meraim, F. (1999), "Sufficient conditions for stability of viscous solids", Comptes rendus de l'Academie des sciences. Serie IIb, mecanique, physique, astronomie, 327(1), 25-31.   DOI   ScienceOn
43 Abed-Meraim, F. and Combescure, A. (2002), "SHB8PS - a new adaptive, assumed-strain continuum mechanics shell element for impact analysis", Comput. Struct., 80, 791-803.   DOI   ScienceOn
44 Abed-Meraim, F. and Nguyen, Q.S. (2007), "A quasi-static stability analysis for Biot's equation and standard dissipative systems", Eur. J. Mech. - A/Solids, 26, 383-393.   DOI   ScienceOn
45 Abed-Meraim, F. and Combescure, A. (2011), "New prismatic solid-shell element: assumed strain formulation and hourglass mode analysis", Struct. Eng. Mech., 37, 253-256.   DOI
46 Alves de Sousa, R.J., Cardoso, R.P., Fontes Valente, R.A., Yoon, J.W., Gracio, J.J. and Natal Jorge, R.M. (2006), "A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness-Part II: Nonlinear applications", Int. J. Numer. Meth. Eng., 67, 160-188.   DOI   ScienceOn
47 Areias, P.M.A., César de Sá, J.M.A., Conceição António, C.A. and Fernandes, A.A. (2003), "Analysis of 3D problems using a new enhanced strain hexahedral element", Int. J. Numer. Meth. Eng., 58, 1637-1682.   DOI   ScienceOn
48 Betsch, P., Gruttmann, F. and Stein, E. (1996), "A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains", Comput. Meth. Appl. Mech. Eng., 130, 57-79.   DOI
49 Boutyour, E.H., Zahrouni, H., Potier-Ferry, M. and Boudi, M. (2004), "Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants", Int. J. Numer. Meth. Eng., 60, 1987- 2012.   DOI   ScienceOn