Transactions of the Korean Society for Noise and Vibration Engineering
/
v.19
no.7
/
pp.710-718
/
2009
The time difference of arrival(TDOA) algorithm is being used widely for identifying the location of a source emanating either electrical or acoustic signal. It's application areas will not be limited to identifying the source at a fixed location, for example the origin of an earthquake, but will also include the trajectory monitoring for a moving source equipped with a GPS sensor. Most of the TDOA algorithm uses time correlation technique to find the time delay between received signals, and therefore difficult to be used for identifying the location of multiple sources. In this paper a TDOA algorithm based on cross-spectrum is developed to find the trajectory of two sound sources with different frequencies. Although its application is limited to for the sources on a disk plane, it can be applied for identifying the locations of more than two sources simultaneously.
In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor networks(S/N) is presented for use in a passenger vehicle. While an inertial measurement unit(IMU) is generally used for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an accelerometer array, global positioning system(GPS) and in-vehicle networks to get information from yaw rate and roll rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.
In this paper, vision-based positioning algorithm for melon harvesting robot is presented. RGB value of the input image was converted into HSI value then, melon area was extracted after performing the binarization using HUE value. After morphological filtering was applied to remove noise, outermost boundary points were obtained using border following and convex hull method. Elliptical fitting for melons was perform by the RANSAC algorithm, the center point of ellipse, the length of the short and long axis, and rotation angle were obtained. We verified the effectiveness of the proposed method by various simulation experiments and confirmed actual feasibility of the proposed method by applying to the real melon.
In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.10
/
pp.1044-1050
/
2014
Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.
Kim, Kyu-Won;Lee, Byung-Hyun;Im, Jun-Hyuck;Jee, Gyu-In
Journal of Institute of Control, Robotics and Systems
/
v.22
no.12
/
pp.1046-1052
/
2016
For the safe driving of autonomous vehicles, accurate position estimation is required. Generally, position error must be less than 1m because of lane keeping. However, GPS positioning error is more than 1m. Therefore, we must correct this error and a map matching algorithm is generally used. Especially, road marking intensity map have been used in many studies. In previous work, 3D LIDAR with many vertical layers was used to generate a local intensity map. Because it can be obtained sufficient longitudinal information for map matching. However, it is expensive and sufficient road marking information cannot be obtained in rush hour situations. In this paper, we propose a localization algorithm using an accumulated intensity local map. An accumulated intensity local map can be generated with sufficient longitudinal information using 3D LIDAR with a few vertical layers. Using this algorithm, we can also obtain sufficient intensity information in rush hour situations. Thus, it is possible to increase the reliability of the map matching and get accurate position estimation result. In the experimental result, the lateral RMS position error is about 0.12m and the longitudinal RMS error is about 0.19m.
Journal of Korean Society for Geospatial Information Science
/
v.10
no.5
s.23
/
pp.75-80
/
2002
Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.
Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.
Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.499-501
/
2016
In this paper, we suggest an advance method for maintaining a perceived behavior as triangle formation and preventing collision between each other in case of a flying drone. In the existing studies, the collision of the drone is only controlled by using light entered in the camera or the image processing. However, when there is no light, it is difficult to confirm the position of each other and they can collide because this system can not confirm the each other's position. Therefore, in this paper, we propose the system to solve the problems by using the distance and the relative coordinates of the three drones that were determined using the ALPS(Ad hoc network Localized Positioning System) algorithm. This system can be a new algorithm that will prevent collisions between each other during flying the drone object. The proposed algorithm is that we make drones maintaining a determined constant value of the distance between coordinates of each drone and the measured center of the drone of triangle formation. Therefore, if the form of fixed formation is disturbed, they reset the position of the drone so as to keep the distance between each drone and the center coordinates constant. As a result of the simulation, if we use the system where the supposed algorithm is applied, we can expect that it is possible to prevent malfunction or an accident due to collisions by preventing collisions of drones in advanced behavior system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.