DOI QR코드

DOI QR Code

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles

도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구

  • PARK, Jaehong (Highway and Transportation Research Institute, Korea Institute of Construction Technology) ;
  • OH, Cheol (Transportation and Logistics Engineering, Hanyang University) ;
  • YUN, Dukgeun (Highway and Transportation Research Institute, Korea Institute of Construction Technology)
  • 박재홍 (한국건설기술연구원 도로연구소) ;
  • 오철 (한양대학교 교통물류공학과) ;
  • 윤덕근 (한국건설기술연구원 도로연구소)
  • Received : 2017.02.10
  • Accepted : 2017.04.19
  • Published : 2017.04.30

Abstract

Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

교통사고는 운전자가 주변 차량 및 도로기하구조 상태 변화에 대한 인지부족과 적절한 회피 행동을 능동적으로 수행하지 못하는 경우에 순간적으로 발생하는 차량의 물리적 충돌사건으로 정의 될 수 있다. 따라서, 운전자가 도로를 주행하면서 만들어 내는 주변 환경과의 상호작용을 지속적으로 모니터링하고, 교통사고를 유발할 개연성이 높은 이벤트를 검지하는 것은 교통사고 예방을 위한 선결조건이다. 본 연구에서는 연속류 도로를 대상으로, GPS(Global Positioning System)-IMU(Inertial Measurement Unit), 카메라, 레이더, 라이다가 부착된 조사 차량을 이용하여 도로기하구조 및 교통환경 정보를 취득하였다. 취득된 정보를 가공하여 차량의 상호 작용 및 도로기하구조 특성을 고려한 주변차량과의 충돌 가능성여부를 평가할 수 있는 알고리즘을 개발하였다. 특히, 도로기하구조를 제한속도(직선부), 안전 속도(곡선부)로 구분하여 평가하고, 교통안전지표인 SDI를 이용하여 차량의 주행안전성을 평가하였다. 본 연구에서 개발한 방법론은 도래하는 자율주행시대에 차량의 센서로 부터 수집이 가능한 자료를 이용하여 안전성을 평가한다는 관점에서 향후 유용하게 활용 될 수 있을 것으로 기대된다.

Keywords

References

  1. Aarts L., Van Schagen I. (2006), Driving Speed and the Risk of Road Crashes: A Review, Accident Analysis and Prevention 38(2), 215-224. https://doi.org/10.1016/j.aap.2005.07.004
  2. AASHTO (2010), Highway Safety Manual.
  3. Cafiso S., Graziano A. D., Cava G. L. (2005), Actual Driving Data Analysis for Design Consistency Evaluation, Transportation Research Record, Journal of the Transportation Research Board, 1912, 19-30. https://doi.org/10.1177/0361198105191200103
  4. Cunto F., Duong D., Saccomanno F. F. (2009), Comparison of Simulated Freeway Safety Performance to Observed Crashes, presented at the 88th Transportation Research Board Annu. Meeting, Washington, DC.
  5. Cunto F., Saccomanno F. F. (2008), Calibration and Validation of Simulated Vehicle Safety Performance at Signalized Intersections, Accident Analysis and Prevention. 40(3).
  6. Kim J. H., Song T. J., Oh C., Sung N. M. (2008), Methodology for Evaluating Collision Risks Using Vehicle Trajectory Data, J. Korean Soc. Transp., 26(5), Korean Society of Transportation, 51-62.
  7. Kim K. H., Lim J. M., Lee S. B., Kang D. S., Hong J. Y. (2012), Estimation Desirable Safety based on Driving Condition on Rural Highway, International Journal of Highway Engineering, 14(4), 149-162. https://doi.org/10.7855/IJHE.2012.14.4.149
  8. KoROAD (2015), Traffic Accident Annularly Report 2014.
  9. Minderhoud M. M., Bovym P. H. L. (2011), Extended Time-to-collision Measures for Road Traffic Safety Assessment, Accident Analysis & Prevention, 33(1), 89-97. https://doi.org/10.1016/S0001-4575(00)00019-1
  10. Ministry of Land, Infrastructure and Transport (2013), Rules About the Road Structure and Facilities Standards Explanation.
  11. Oh C., Jo J. I., Kim J. H., Oh J. T. (2007), Methodology for Evaluating Real-time Real-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking, 25(5), 173-182.
  12. Oh C., Oh J. T., Song T. J., Park J. H., Kim T. J. (2009), Advanced Freeway Traffic Safety Warning Information System based on Surrogate Safety Measures (SSM): Information Processing Methods, J. Korean Soc. Transp., 27(3), Korean Society of Transportation, 59-70.
  13. Park S., Lee C., Kho S. Y., Lee Y. G. (2015), Methodology for Calculating Surrogate Safety Measure by Using Vehicular Trajectory and Its Application, J. Korean Soc. Transp., 33(4), Korean Society of Transportation, 323-336. https://doi.org/10.7470/jkst.2015.33.4.323
  14. Son H. J., Kweon Y. J., Park B. (2011), Development of Crash Prediction Models with Individual Vehicular Data Transportation Research Part C, Emerging Technologies, 19(6), 1353-1363. https://doi.org/10.1016/j.trc.2011.03.002
  15. Talebpour A., Mahmassani H., Mete F., Hamdar S. (2014), Near-Crash Identification in a Connected Vehicle Environment, Transportation Research Record, Journal of the Transportation Research Board 2424, 20-28.
  16. Wu K. F., Aguero-Valverde J., Jovanis P. P. (2014), Using Naturalistic Driving Data to Explore the Association Between Traffic Safety-related Events and Crash Risk at Driver Level, Accident Analysis and Prevention 72, 210-218. https://doi.org/10.1016/j.aap.2014.07.005
  17. Wu K. F., Jovanis P. P. (2013), Defining and Screening Crash Surrogate Events Using Naturalistic Driving Data, Accident Analysis and Prevention 61, 10-22. https://doi.org/10.1016/j.aap.2012.10.004