• Title/Summary/Keyword: Positioning algorithm

Search Result 819, Processing Time 0.031 seconds

Direct Teaching and Playback Algorithm for Peg-in-Hole Task using Impedance Control (펙인홀 작업을 위한 임피던스 제어 기반의 직접교시 및 재현 알고리즘)

  • Kim, Hyun-Joong;Back, Ju-Hoon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Industrial manipulators have been mostly used in large companies such as automakers and electronics companies. In recent years, however, demands for industrial manipulators from small and medium-sized enterprises are on the increase because of shortage of manpower and high wages. Since these companies cannot hire robot engineers for operation and programming of a robot, intuitive teaching and playback techniques of a robot manipulator should replace the robot programming which requires substantial knowledge of a robot. This paper proposes an intuitive teaching and playback algorithm used in assembly tasks. An operator can directly teach the robot by grasping the end-effector and moving it to the desired point in the teaching phase. The 6 axis force/torque sensor attached to the manipulator end-effector is used to sense the human intention in teaching the robot. After this teaching phase, a robot can track the target position or trajectory accurately in the playback phase. When the robot contacts the environment during the teaching and playback phases, impedance control is conducted to make the contact task stable. Peg-in-hole experiments are selected to validate the proposed algorithm since this task can describe the important features of various assembly tasks which require both accurate position and force control. It is shown that the proposed teaching and playback algorithm provides high positioning accuracy and stable contact tasks.

Frequency Synchronization Technique for the Equalization Digital On-Channel Repeater (등화형 디지털동일채널중계기의 송수신 신호 간 주파수 동기화 기술)

  • Lee Yong-Tae;Eum Ho-Min;Park Sung-Ik;Seo Jae-Hyun;Kim Heung-Mook;Kim Seung-Won;Seo Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.725-733
    • /
    • 2006
  • In this paper, we propose an algorithm which makes the frequency of output signal synchronize with frequency of input signal in Equalization Digital On-channel Repeater (EDOCR) system which was proposed to overcome the disadvantage of conventional Digital On-Channel Repeater (DOCR). Also, we verify the algorithm by using the mathematical equivalent model and analysis the performance by implying the algorithm to EDOCR. The main idea is to use the frequency offset information, which comes from carrier recovery in the receiving part of EDOCR, when the demodulated symbol is re-modulated in transmitting part. Based on the proposed algorithm, EDOCR not only makes the output signal synchronized with input signal in frequency but also emit the output signal which satisfies the ATSC transmission standard without additional equipments such as Global Positioning System (GSP).

A Study on the Automatic Matching Algorithm of Transporter and Working Block for Block Logistics Management (블록 물류 관리를 위한 트랜스포터와 작업 블록 자동 매칭 알고리즘 연구)

  • Song, Jin-Ho;Park, Kwang-Phil;Ok, Jin-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.314-322
    • /
    • 2022
  • During the shipbuilding process, many blocks are moved between shipyard workshops by block carrying vehicles called a transporter. Because block logistics management is one of the essential factors in enhancing productivity, it is necessary to manage block information with the transporter that moves it. Currently, because a large amount of data per day are collected from sensors attached to blocks and transporters via IoT infrastructure installed in shipyards, automated methods are needed to analyze them. Therefore, in this study, we developed an algorithm that can automatically match the transporter and the working block based on the GPS sensor data. By comparing the distance between the transporter and the blocks calculated from the Haversine formula, the block is found which is moved by the transporter. In this process, since the time of the measured data of moving objects is different, the time standard for calculating the distance must be determined. The developed algorithm was verified using actual data provided by the shipyard, and the correct result was confirmed with the distance based on the moving time of the transporter.

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.

The effect of the improperly scanned scan body images on the accuracy of virtual implant positioning in computer-aided design software

  • Park, Se-Won;Choi, Yong-Do;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2020
  • PURPOSE. The aim of this study was to examine the importance of the defect-free scanning of a scan body by assessing the accuracy of virtual implant positioning in computer-aided design (CAD) software when the scan body image is improperly scanned. MATERIALS AND METHODS. A scan body was digitized in a dentiform model using an intraoral scanner, and scanned images with differing levels of image deficiency were generated: 5%, 10%, and 15% deficiency in the flat or rounded area. Using a best-fit image matching algorithm on each of the deficient scan body images, corresponding virtual implants were created. The accuracy of the implant position was evaluated by comparing the linear and angular discrepancies between the actual and virtual positions of the implant. Kruskal-Wallis tests and Mann-Whitney U tests with Bonferroni correction were used to determine the statistical differences among the seven scanned image deficiency groups (α=.05). RESULTS. In general, the linear and angular discrepancies of the implant position in the software increased as the deficiency of the scan body images increased. A 15% scan body image deficiency generated larger discrepancies than deficiency of 5% and 10%. The difference of scan defect position, flat or rounded area, did not affect the accuracy of virtual implant orientation at 5% and 10% deficiency level, but did affect the accuracy at 15% deficiency level. CONCLUSION. Deficiencies in the scanned images of a scan body can decrease the accuracy of the implant positioning in CAD software when the defect is large, thus leading to the incorrect fabrication of implant prostheses.

Correction Calculation based Pseudorange (의사거리 기반 보정정보 생성)

  • Choi, Jin-Kyu;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.98-99
    • /
    • 2007
  • It is necessary to use satellite radio navigation system as well as satellite radio navigation augmentation system such as differential Global Positioning System to achieve the positioning accuracy and reliability requested by International Maritime Organization in port and coastal area. Especially, position accuracy of DGPS user is effected by accuracy of pseudorange correction broadcasted from DGPS reference station. This paper shows pseudorange correction calculation algorithm adopting a non-common error estimation filter in order to improve accuracy of pseudorange correction. Finally, this paper verifies that the pseudorange correction calculated by adopting a non-common error estimation filter satisfies performance specifications of RTCM.

  • PDF

Dynamic Positioning Control System for Gas & Oil Exploration Platforms Using H$\infty$ Control (H$\infty$ 제어를 이용한 가스 및 석유 탐사용 플랫폼의 동위치 제어)

  • Yoo Hui Ryong;Rho Yong Woo;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Kim Sang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.62-69
    • /
    • 1999
  • This paper presents a design method of dynamic positioning control system(DPS) for floating Platform with rotatable and retractable thrusters using H$\infty$ servo control design method. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying H$\infty$ synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The control algorithm was evaluated on the basis of computer simulation for a proposed DPS design method and experiments was carried out with an image processing method for measurement of DPS position in a water tank The results of overall experiments show that proposed control method will be good to keep at a specified position. And they are compared with the experimental results by LQG synthesis and H$\infty$ optimal control design method.

  • PDF

Development of a Real-time Lifting-path Tracking System of a Tower-crane for Steel Members based on an Integrated Wireless RF Modem and GPS System (무선 RF모뎀과 GPS를 통합한 타워크레인의 철골부재의 실시간 양중위치 추적시스템 개발)

  • Yun, Seok-Heon;Lee, Ghang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.65-70
    • /
    • 2010
  • Steel frame construction in high places entails many risk factors. In order to improve the safety and productivity of steel frame construction, a project to develop a robotic tower-crane has been undertaken. As the first step, a real-time lifting-path tracking system is being developed. In a previous study, a laser-based tracking system was proposed. While a laser-based tracking system requires at least three laser sensors to detect the x, y, z coordinates of a lifted steel member, a GPS-based system has an advantage over the laser-based system, in that the x, y, z coordinates of a lifted steel member can be detected by a single GPS sensor. To improve the accuracy, arelative positioning method using two GPS sensors was proposed in a previous study. This paper reports an improved GPS-based lifting-path tracking system of a tower crane based on an integrated RF modem and GPS system. The results showedthat the RF modem could successfully send the identifier information to a server a maximum distance of 1 km away from the lifted steel beam, and the lifting path information of each beam captured by the GPS-based tracking system was successfully saved together. Also, byusing an improved algorithm for the GPS relative positioning method, the deviation was reduced to 0.61 m on average.

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.