• Title/Summary/Keyword: Positioning Stage

Search Result 262, Processing Time 0.028 seconds

Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment (고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어)

  • Kim, Wan-Soo;Lee, Dong-Jin;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1613-1622
    • /
    • 2010
  • In this paper, the ultraprecision positioning control of an ultrasonic linear motor in a high-vacuum environment is presented. The bolt-clamped Langivin type transducer (BLT) with the 3rd longitudinal; and 6th lateral vibration modes was developed, which was excited by using the Eigen resonance frequency for two vibration modes in order to generate stable and high power. In practical applications, however, even if a geometrical design has an Eigen frequency, discordance between both mode frequencies can be generated by the contact mechanism and because of manufacturing errors as well as environmental factors. Both mode frequencies were precisely matched by adjusting the impedence. By using this method, the BLT can be driven under any environmental conditions. The nominal characteristic trajectory following(NCTF) control method was adopted to control the positioning of the system in vacuum. The developed linear motor stage show high positioning accuracy with 5 nm.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Development of the Precision Positioning Mechanism by Nano Displacement Magnification Device (나노 변위확대기구의 정밀위치결정기구에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Zhao, Zhijun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • A new precision positioning mechanism for stage was been developed by Displacement Magnification Device(DMD) in this paper. The DMD was composed of the beam and multilayer piezoelectric actuators. The theoretical and experimental analysis of DMD to enlarge displacement more then 50times were discussed. And the 2-axis stage by using displacement amplification apparatus was added in the new DMD, and it was able to do it through finite element analysis and experiment. As the results, the magnification of DMD can be obtained about $100{mu}m$ displacement to the 10V input voltage($1.5{mu}m$). And the about 50nm of linearity error in the $30{mu}m$ measurement range and 20times of the amplification in displacement can be measured. In addition, the experimental results are confirmed the possibility of millimeter displacement characteristics and correspond to finite element analysis results.

Study on Erection Block Positioning Using Genetic Algorithm (유전자 알고리즘을 이용한 탑재블록 위치제어에 관한 연구)

  • Shin, Sung-Chul;Lee, Jae-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • In the shipbuilding industry, accuracy management is one of the keys for strengthening competitiveness. However, ship block errors are unavoidable in the block erection stage because of the deformation of the blocks. Currently, accuracy managers decide whether or not block corrections are needed, based on measured and designed point data. They adjust the locations of hull blocks so that the blocks are aligned with other assembly blocks based upon the experience of production engineers. This paper proposes an optimization process that can adjust the locations of ship blocks during the erection stage. A genetic algorithm is used for this optimization scheme. Finally, the feasibility of the proposed method is discussed using several case studies. We found that the proposed method can find the optimized re-alignment of erection blocks, as well as improve the productivity of the erection stage.

Development Plans by Life-Cycle of Rural Experience Tourism Village using Positioning Analysis - Focused on Hapjeon-village - (상한위치분석을 통한 농촌체험관광마을의 생애주기별 발전방안 -합전마을을 중심으로-)

  • Choi, Aesoon;Jung, Nam Su;Jeong, Dayeong;Song, Yi;Eom, Seong Jun;Choi, Se Hyun;Rhee, Shinho
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, the objectives are to provide rural experience tourism village business courses and development direction in between individual farmers and the village in base on rural development business of Hapjeon-village. The developmental process of a farm-stay village can be categorized into the period of six stages: 1) a conception stage 2) an adoption stage 3) a growth stage 4) an expansion stage 5) a stagnation stage 6) a recovery stage. Farm Stay Villages, Individual Farmhouses or Producer Groups can be placed in four different quadrant areas of a graph, depending on the pursuing direction and results of core values by having the X-axis for economic factors (public profits, individual profits) and by having the Y-axis for emotional factors (self-actualization, conflicts). The first quadrant area is designated for ideal individual farmhouses and producer groups for having achieved the status of economic self-reliant and high emotional satisfaction. The second quadrant is for ideal self-actualized communal villages having achieved the independent public interest and public profitable status. The third quadrant is reserved for villages experiencing communal conflicts and no economic self-reliant stagnant status. The fourth guardant area is allocated for individual farmhouses and producer groups having achieved self-reliant economic status, yet having communal conflicts. Using the aforementioned concept, the government shall design village development projects and prepare realistic and achievable goals and place them in as a systematic device in future projects.

Modeling and Motion Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀 스테이지의 모델링 및 운동제어)

  • Kim, Yeung-Shik;Kim, Jai-Ik;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.51-58
    • /
    • 2010
  • This paper suggests a control technique of the two axes precision stage. The stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic motion of the stage is analysed by the finite element method and identified by the frequency domain modeling technique based on the experimental data. The sliding mode control with integrator is applied to improve the tracking ability of the stage to the complex reference input signal. Experimental results demonstrate that the proposed modeling schemes and control algorithm can be used effectively for the two axes stage.

A Study on the Design and Control of a Ultra-precision Stage (초정밀 스테이지 설계 및 제어에 관한 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 2006
  • The ultra-precision stage is demanded for some industrial fields such as semiconductor lithography, ultra-precision machining, and fabrication of nano structure. A new stage was developed for those applications in order to obtain nano meter resolution. This stage consists of symmetric double parallelogram mechanism using flexure hinges. The mechanical properties such as strength of the flexures and deformations along the applied force were analyzed using FEM. The stage is actuated by a piezoelectric actuator and its movement was measured by a ultra-precision linear encoder. In order to improve positioning performance, a PID controller was designed based on the identified second order transfer function. Experimental results showed that this stage could be positioned within below 5 nm resolution irrespective of hysteresis and creep by the controller.

Development of Stopper Mechanism for the Precision Stage with Nanometer Accuracy (초정밀 스테이지용 스토퍼기구의 개발)

  • Kweon, Hyun-Kyu;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.112-117
    • /
    • 2012
  • This paper presents a new stopper mechanism for precision stage by using the Piezoelectric element actuator. The new stage including a new stopper mechanism has the precision positioning mechanism that was been developed for generation displacements with nanometer accuracy and a millimeter dynamic range simulataneouly. The stage is composed not of the mechanical two stopper but of only one Piezoelectric element actuator. The characteristics for the new stage and the stopper have been evaluated experimentally. As the results, we can know that the linearity error characteristics of stage is 30nm in the $20{\mu}m$ measurement range. In addition, the experimental results are confirmed the possibility of the movement in millimeter range.

Modified Sliding Mode Control for Ultra-precision Positioning System (나노급 초정밀 위치결정 시스템에 대한 슬라이딩 모드 제어기 설계)

  • Choi, In-Sung;Kim, Hyung-Suk;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.348-350
    • /
    • 2006
  • In this paper, we design a new controller for an ultra-precision positioning system. In general, time optimal control enables to reach a target position faster than others. However it shows a weakness to chattering effect. In order to solve the problem, a new control algorithm based on sliding mode control is proposed. The suggested controller is composed of LQR control and sliding mode control. By performing some simulations, we prove that the proposed controller is more robust than time optimal control under the circumstance of parameter uncertainties and external disturbances.

  • PDF