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Abstract 

 
Localization is a hot research spot for many areas, especially in the mobile robot field. Due to 
the weak signal of the global positioning system (GPS), the alternative schemes in an indoor 
environment include wireless signal transmitting and receiving solutions, laser rangefinder to 
build a map followed by a re-localization stage and visual positioning methods, etc. Among 
all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points 
are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi 
modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi 
scheme usually lacks orientation information. Besides, the distance error is large because of 
indoor signal interference. Another research direction that mainly refers to laser sensors is to 
actively detect the environment and achieve positioning. An occupancy grid map is built by 
using the simultaneous localization and mapping (SLAM) method when the mobile robot 
enters the indoor environment for the first time. When the robot enters the environment again, 
it can localize itself according to the known map. Nevertheless, this scheme only works 
effectively based on the prerequisite that those areas have salient geometrical features. If the 
areas have similar scanning structures, such as a long corridor or similar rooms, the traditional 
methods always fail. To address the weakness of the above two methods, this work proposes 
a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist 
the robot localization in a geometrically similar environment. Firstly, a grid map is built by 
using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the 
RSSI values are achieved in the localization stage to get a coarse localization. Finally, an 
improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine 
localization. Experimental results show that our approach is effective and robust for both 
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global localization and the kidnapped robot problem. The localization success rate reaches 
97.33%, while the traditional method always fails. 
 
 
Keywords: Localization, Wi-Fi, SLAM, RSSI, Geometrically similar, Particle filter. 
 
 
 
 
 

1. Introduction 

Mobile robots have been applied to various scenes which facilitate people’s life. In an indoor 
environment, vacuum cleaner robots are used to sweep the floor [1], a guide robot can guide a 
blind person [2], and disinfection robots and meal delivery robots are used more frequently 
during the COVID-19 epidemic time [3]. Localization is one of the most important capacities 
for an autonomously moving mobile robot and it’s a prerequisite for the following path 
planning and navigation [4]. If the mobile robot is in an outdoor environment, then the GPS is 
the most popular and widely used wireless location technology to solve the positioning 
problem [5]. However, the GPS signal in the indoor areas is weak and out of action. As an 
alternative, many signal-based methods are proposed to replace GPS solutions, for instance, 
Wi-Fi [6], ultrasonic, radio frequency identification (RFID) [7], ultrawide-band (UWB) [8], 
wireless sensor network (WSN) [9], etc. RSSI (received signal strength indicator) is usually 
used to calculate the approximate distance between the receiver and the signal transmitter [10]. 
Although the RSSI-based wireless localization solution is not accurate, it can be used for 
coarse positioning purposes. 

In the era of mobile internet, Wi-Fi is the most common one compared to other wireless 
devices in indoor environment where human beings live and work, such as office rooms, 
hospitals, hotels, supermarket malls, teaching buildings, dormitories, factories, etc. However, 
the Wi-Fi-based localization result only provides a piece of basic position information without 
orientation. The mobile robot still cannot know where is the free area or obstacle, thus cannot 
navigate or move freely in the environment.  

Another commonly used method is focused on the 2D laser rangefinder or Lidar which can 
achieve distance information of the surroundings. The laser sensor can construct a metric map 
that is suitable and effective for path planning in the mobile robot navigation process. Before 
the robot performs the localization task, it should be controlled to build a 2D probabilistic 
occupancy grid map by using the SLAM method. Given the map of an indoor room or area, 
the localization task can be easily solved by utilizing the Monte Carlo localization method 
(MCL) [11]. However, when the mobile robot enters into a geometrically similar area, as Fig. 
1 shows, the scanning distance data from its surroundings of a 2D laser sensor are the same, 
thus the localization task becomes very difficult [12]. 

To make up for the shortcomings of the above two technologies and solve the localization 
problem in a geometrically similar indoor environment, this paper proposes an alternative 
approach that integrates the Wi-Fi signal and laser SLAM techniques. We adopt a coarse-to-
fine paradigm that uses Wi-Fi signal retrieval to get a coarse localization and the range data to 
realize a fine localization. The main contributions of this work are as follows: 
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 An occupancy grid map is built by using laser SLAM techniques. Each cell in the map 
has three possible states which are occupied, free, or unknown. Then, the mobile robot is 
controlled to move to a subarea and collect the distance data by using the laser rangefinder 
sensor. The range data are used to compute a geometric centroid of the local area. These 
centroid positions are selected as the sampling points where the Wi-Fi module mounted 
on the mobile robot is used to receive RSSI values. 

 The mean number of the several times received signal strength values are stored in the 
fingerprint database along with the coordinate of the associated sampling point. A 
position index correlates with the RSSI and the position is also stored for the later search 
purpose in the localization phase. 

 A coarse-to-fine localization paradigm is used to achieve the accurate pose. The coarse 
position is realized by using the RSSI value matching method and the fine localization is 
obtained by adopting an improved MCL algorithm. The improved MCL method includes 
particle initialization and resampling strategy. Experimental results indicate that our 
proposed approach achieves a 97.33% successful localization rate. 

 

 
Fig. 1. Diagram of localization system. 

 
This paper is organized as follows. The related work of 2D laser-based SLAM, filter-based 

localization and Wi-Fi-based localization are discussed in Section II. Our proposed method is 
presented in Section III, which includes overview framework of the method, building an 
occupancy grid map, RSSI-distance fingerprint, selection strategy of sampling points, and the 
coarse-to-fine localization. The experiment and discussion are described in Section IV and 
Section V is the conclusion. 

2. Related Work 

2.1 Laser-SLAM and Localization 
SLAM means that a mobile robot or handheld sensor concurrently perceives the surrounding 
structures and estimates their poses. Laser Lidar SLAM is mainly used for building a plane 
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grip map or a 3D spatial voxel map of the environment where the mobile robot will perform 
tasks. Due to the high cost and practical application requirement, 3D laser Lidar is usually 
used in outdoor self-driving cars [13] or 3D reconstruction of buildings [14]. In an indoor 
environment, a mobile robot has limited height and only needs to know where can pass for 
navigation. In addition, most of the surroundings are structured scenes, and most of the objects 
or obstacles are placed on the ground. Consequently, a 2D laser Lidar is competent for the use 
of mobile robot navigation tasks in indoor rooms. Another important reason is that it can build 
a 2D probability occupancy grid map for the following path planning. The most famous works 
of the 2D laser Lidar SLAM are Gmapping [15] and Cartographer [16], the former is a filter-
based scheme and the latter is a graph optimization scheme. In addition, there are other options 
such as fast-SLAM, hector SLAM [17], and Karto SLAM [18]. 

In the mobile robotic field, the localization problem refers to achieving pose information. 
Different from the positioning task which only needs to get the coordinate of a position, the 
localization of a mobile robot includes a position and an orientation. There are three 
localization categories which are global localization, pose tracking, and kidnapped robot 
problem [19]. The most difficult one is global localization because of no initial pose 
information. Kalman filter and its extended versions are mainly used for pose tracking, not 
suitable for the other two problems [20-22]. In contrast, the particle filter is compatible with 
all the three cases [23]. Monte Carlo localization methods use particles to simulate arbitrary 
distribution, more importantly, they are suitable to deal with nonlinear and non-gaussian 
problems. However, for those geometrically similar environments, the MCL method will fail. 

2.2 Wi-Fi-based Localization 
Wi-Fi works within the RF bands of 2.5 GHz under the network protocols, IEEE 802.11b, 
IEEE 802.11g, and IEEE 802.11n. Another RF band is 5 GHz under the protocol IEEE 802.11a. 
When the Wi-Fi signal is used for localization, generally, it means to achieve a position 
coordinate without the orientation of the user or mobile robot. A fingerprint database which is 
consisted of RSSI values is commonly adopted for localization [24]. The signal fingerprint is 
usually collected in an offline stage and used by the following online querying stage [25]. 
Several related works based on Wi-Fi signals achieved satisfactory results [26-28]. 

However, as the environmental impacts, the RSSI value is time-varying and unreliable [29]. 
Besides, the orientation of the mobile robot cannot be directly obtained and the RSSI 
information is not enough for obstacle avoidance or navigation. Consequently, we integrate 
the laser SLAM and the RSSI of the Wi-Fi techniques to get optimal localization. 

3. Proposed Methodology 
An overview framework of the mapping and localization system is shown in Fig. 2. The system 
mainly consists of three steps which are grid map construction step, sampling positions 
selection and fingerprint database building step, and the coarse-to-fine localization step.  
Detailed descriptions are given in the following sections. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 5, May 2023                                   1343 

 
Fig. 2. Framework of the mapping and localization system. 

3.1 Build an Occupancy Grid Map 
Before the mobile robot can perform tasks or navigate autonomously, it utilizes a 2D laser-
based SLAM technique to build an occupancy grid map. In general, a 2D laser-based SLAM 
mapping system needs an encoder as the odometer to estimate the motion information and a 
laser rangefinder to achieve the measurement data.  Fig. 3a means a pose of the mobile robot 
in a world or global coordinate system. The position coordinate is ( , )x y  and the orientation 
relative to the worldx  axis is θ . Fig. 3b is a diagram of the odometry motion model which 
usually measures data by using an encoder. The center of the black cycle on the lower left of 
Fig. 3b means a position at time 1−t  and the black arrow means the heading direction of the 
mobile robot. Thus, the pose of a mobile robot at time 1−t  can be represented as 

),,(x 1111 −−−− = tttt yx θ . Similarly, the upper right part of Fig. 3b means that the pose at time 
t  is ),,(x t ttt yx θ= . The line of dashes means that the displacement of the mobile robot from 
time 1−t  to time t  can be decomposed into one translation ( transδ ) and two rotations ( 1rotδ  
and 2rotδ ). Compared with the velocity motion model, this odometry motion model is more 
accurate and suitable for localization and mapping tasks [11]. 
 

       
(a)                                                                       (b) 

Fig. 3. Diagram of the mobile robot motion model. 
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An ideal model expression of the displacement without error is shown in equation (1): 
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However, there are too many noises and measurement errors in reality, such as the drift and 
slip of wheels. Fortunately, we can describe the model by using the probabilistic method. The 
difference between the estimation model and the ideal model can be expressed by probabilistic 
sampling, as equation (2) shows: 
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where the variables 1α , 2α , 3α , and 4α  are the parameters that determine the motion noise 

of a specific mobile robot platform. 1r̂otδ , 2r̂otδ , and transδ̂  are the estimated values. Therefore, 
given a pose at time 1−t  and odometry data, the pose at time t  can be computed as follow: 
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When using a range-based measurement sensor like 2D laser Lidar, the observation or 
measurement function has two types of representations which are the likelihood field model 
and the beam rangefinder model. Due to the lack of smoothness, the beam rangefinder model 
is not commonly used. In this work, we select the likelihood field model to express the 
observation. Suppose ( , )sens sensx y  is the position of the center of the laser sensor which has 

the local coordinate system fixed on the mobile robot platform. sensk ,θ  is the angle of the k-th 
sensor beam relative to the heading direction of the mobile robot. Through a triangular 
transformation that maps measured distance data into the global coordinate system, each 
endpoint coordinate of the observation k

tz  can be computed as equation (4) shows. 
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The measurement probability distp  can be calculated by the likelihood domain as follows: 
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The SLAM technique can be thought of as a state estimation problem of joint estimation of 
pose and observation. The probabilistic occupancy grid map can be thought of as a 
combination of many basic grid cells. The grid cells are the discretization of a place and the 
mathematical equation can be described as follows: 
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),|(),|( :1:1:1:1 ttiitt xzmpxzmp Π=                                       (6) 

The logarithmic probability expression (7) is to avoid the numerical instability near 0 or 1. 
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And the SLAM process can be expressed as: 
),,|(),|(),|,( :1:1:1:1:1:1:1:1:1 ttttttttt uzxpuzxpuzxp mm ⋅=   

),|(),|( :1:1:1:1:1 ttttt uzxpzxp ⋅= m                        (8) 
  

3.2 Selection strategy of sampling points 
The mobile robot only needs to identify the nearest one or more Wi-Fi access points, then it 
can know its approximate area. Given a coarse localization area, the following fine localization 
process can be solved by the traditional approach. Different from the traditional Wi-Fi-based 
localization methods, the coordinates of the APs are not essential in our proposed approach. 
In addition, the sampling points are not uniformly distributed throughout the map, thus 
reducing the number of sampling points and the sampling workload. 

To achieve this goal, the geometric centroid of the local area is selected as the sampling 
point. As Fig. 4a shows, the mobile robot with a laser sensor scans the surroundings in a 
corridor environment. The geometric centroid position can be calculated by calculating the 
average value of effective scanning distances. The position coordinate of the geometric 
centroid is ( , )gc gc gcP x y= , then it can be represented as follows: 
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where ( , )i ix y  is the coordinates of the i-th endpoint of the laser beam and N is the total 
number of beams. If the measured distance value exceeds the maximum measurement range, 
then it is ignored. Obviously, although the geometric centroid in the corridor is not unique, the 
point will fall on the middle line of the corridor. In a specific room as Fig. 4b shows, the 
geometric centroid is unique and the mobile robot can move to the position easily. Therefore, 
we only need to collect RSSI signals at these special locations. 
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(a)                                                                        (b) 

Fig. 4. The geometric centroid of the local areas. (a) A corridor area. (b) A single room. 

3.3 RSSI-distance Fingerprint 
The database of RSSI-distance fingerprints will be created according to the sampling points 
selection strategy in the offline phase. Fig. 5 shows the process that the mobile robot collects 
signal information in different positions and saves them into a fingerprint database. The blue 
marks are Wi-Fi access points (APs) which are thought of as the reference signal nodes or 
signal beacons. Although the names are called in different manners, the essential effects are 
the same. It is not necessary to know the specific position of each Wi-Fi AP, however, it must 
be ensured that each room or corridor area has an AP device. 

Suppose the number of APs is n, the i-th sampling position coordinate is ( , )i ix y , rss  
means a signal strength value of several times measurement, the number of sampling points is 
m, and iFP  represents the i-th fingerprint vector at the i-th sampling position. Then the iFP  
can be expressed as formula 11 shows, 

1 2( )j n
i i i i iFP rss rss rss rss=                                      (11) 

where j
irss  is the mean signal strength value from the j-th AP to the i-th sampling position. It 

should be noted that not all AP signals can be received by the terminal device. In the i-th 
sampling position, the receiver node can achieve n RSSI values only if all of the nodes are 
distributed within a visible range. If the receiving signal value from an AP is weak or no signal 
can be received, the rss  can be set as zero. 

 

Fig. 5. The diagram of RSSI-distance fingerprint. 
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A fingerprint database consists of m vectors which are RSS values combined and collected 
from all sampling points, as formula 12 shows. 
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Due to the inaccuracy of a single measurement, the mean value of k times measurement is 
considered as a final reference. In a sampling position A, a signal matrix of k times values from 
the n APs is expressed as follows: 
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The arithmetic mean signal value is computed according to equation (14): 

,
1

1 k
j

i i j
j

rss rss
k =

= ∑                                                       (14) 

The next work is to correlate the location information with the fingerprints. The coordinate 
of a sampling position is decided when the mobile robot has built an occupancy grid map and 
moves in the known areas. According to section 3.2, the mobile robot reads the scanning data 
and computes the geometric centroid of the local surrounding area. When the mobile robot 
moves to the position of the geometric centroid, the position coordinate is recorded as a 
sampling point. The associated information _ iGeo index  is represented by the following 
formula: 

        _ {( , ), }i i i iGeo index x y FP=                                               (15) 

3.4 Coarse-to-fine Localization 
In the online localization phase, the mobile robot achieves the pose information by using a 
coarse-to-fine paradigm. Firstly, the mobile robot scans the surroundings to achieve distance 
information relative to the surrounding walls or obstacles. Secondly, the mobile robot moves 
to the middle line of the corridor or the geometric centroid of a room according to equation 
(9). Thirdly, the RSSI values from all APs are measured to match the previously built 
fingerprint database. Finally, look up the fingerprint database and the associated information 
to find the potential position of the mobile robot. 
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                              (a)                                                                                 (b)                

Fig. 6. Coarse localization in a corridor. (a) Slightly movement to the middle line.  
(b) Particles initialization in a specific area. 

 

 
                            (a)                                                                                   (b)                                        

Fig. 7. Coarse localization in a room or local area. (a) Slightly movement to the geometric centroid 
area. (b) Particles initialization in a specific area. 

 
However, the above search and match method is effective only under ideal conditions 

without noise or error. The actual situation is that the signal will be inference and the geometric 
centroid position cannot be obtained accurately. To solve the problem, we use the KNN 
algorithm to calculate the most likely estimated position ( , )est estx y  which is relative to the 
sampling point [30].  

Fig. 6a and Fig. 7a are the coarse localization processes that the mobile robot is powered 
on or waked up from the system halted, the former is in a corridor and the latter is in a room 
or local area. Scanning distance data is computed to get a geometric centroid position, then, 
the mobile robot moves to the uniquely local area. Fig. 6b and Fig. 7b are the initializations 
of the particle filter method. The initial particles are distributed around the estimated position 
and scattered evenly in a circular area. The representation is shown in equation (16). 

 
2 2 2( ) ( )est estx x y y r− + − =                                             (16) 
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where r  is the radius of the circular. In this work, the weights of the particles are computed 
from a gaussian function (( , ); , )initialw P x y u= Σ , as equation (17) shown: 
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2 2

2 2
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                              (17) 

A detailed algorithm is described in Algorithm 1 to realize a fine localization. 

Algorithm 1. Improved MCL Algorithm 
Input: Particle set 1−tχ , control tu  (odometry), observation tz  (laser data), RSSI values 
Output: Particle set tχ  
1:   Initialization, 0=t , ∅== tt χχ  
2:   Geometric centroid computing based on the laser scanning data using equation (9) 
3:   Coarse position estimation based on Wi-Fi RSSI retrieval 
4:   for i=1 to N do 
5:       uniformly samples particles in a circular area with the center ),( estest yx  and radius r 
6:       ),(~ˆ ,,0 yxyx

i
estest

uNw Σ   end for      

7:   Normalized weights ∑
=

=
N

j

jii www
0

000 /  

8:   for 1=t  to k do 
9:       for 1=i to N do 
10:          =][ˆ j

tx sample_motion_model ),( ][
1
j

tt xu −  using equation (3) 

11:          =][ˆ j
tw measurement_model ),ˆ,( ][ mj

tt xz  using equation (4) and (5) 
12:          }{ ><∪= tttt wx ˆ,ˆχχ     
13:      end for 
14:      if time interval equals T  
15:          go to step 4 and resampling particles using a repeated coarse-to-fine scheme 
16:      else 
17:          resampling the particles using ordinary MCL 
18:      end if 
19:  end for 
20:  return tχ  

4. Experiment and Discussion 
Our experimental mobile robot platform is equipped with Mecanum wheels and is shown in 
Fig. 8a. The microcomputer is a Raspberry Pi 4B which has a 4-core 1.5 GHz ARM Cotex-
A72 CPU and 4GB LPDDR4 RAM. An RPLIDAR A2 laser Lidar (SLAMTEC company, 
Shanghai, China) has an effective measurement radius of 8 to 10 meters in practice. The 
reference signal nodes are domestic wireless routers and the WI-FI module installed on the 
robot is an ESP8266. The module supports standard IEEE802.11b/g/n protocol, STA, AP, and 
STA+AP action modes, and a built-in complete TCP/IP protocol stack. Fig. 8b is the 
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occupancy grid map of Fig. 1 and is built by using the Gmapping SLAM method [15]. There 
are 12 access points and 15 sampling points are chosen in the experiment. 

  
                      (a)                                                                               (b) 

Fig. 8. The mobile robot platform and the grid map. 
 

The experiments are conducted by using the traditional MCL method without a Wi-Fi 
signal and the improved MCL method with Wi-Fi assistance, respectively. Due to the pose 
tracking or local localization task being easy when the initial pose is known, we only care 
about the global localization results. 

 
Fig. 9. Initialization of the particles using traditional MCL. 

 
The first experiment is shown in Fig. 9 where is a particle set initialization using traditional 

MCL method. Without any auxiliary information, the mobile robot cannot know its initial pose. 
Therefore, the particle filter method scatters particles evenly throughout the whole map. The 
red arrows represent the potential mobile robot poses. As shown in the Fig. 9, the 10 rooms 
are highly similar in the two-dimensional geometric structures. Besides, the corridor 
environment also has symmetrical and similar areas. The subsequent localization process will 
fail with high probability like the result of the previous work [31]. Consequently, only a 2D 
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laser sensor is not enough for the mobile robot localization in indoor environment with 
geometrically similar structures. 

 
Fig. 10. Initialization of the particles using proposed method. 

 
Fig. 11. Several iterations of the initialization of the proposed method. 

 
Different from the traditional MCL method, the second experiment was conducted by using 

our proposed strategy. We placed the mobile robot in the upper left room near the door before 
performing localization task. Although the mobile robot can receive all the RSSI values, the 
measured signal data has error and fluctuates. Therefore, in the next step, the scanning distance 
data achieved by the laser Lidar was used to compute an approximate geometric centroid 
position. When the mobile robot moved to the target position area, a particle set initialization 
is performed according to equation (16) and (17). The radius of the target circular area was set 
to 0.3 m by experience. Fig. 10 shows the initialization particles based on our proposed method. 
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Different from the uniform distribution through the whole map, all particles are gathered in a 
specific local area, the room with AP1 and SP1. After several iterations of fine localization 
process, the particles are more concentrated, as Fig. 11 shows.  

In our work, the purpose of such dispersion of sampling points is to distinguish signal 
values, thus can distinguish different areas of a corridor or different rooms. Even if there exists 
signal interference, the signal strength received from the AP1 in the central region of the room 
is far greater than the value received from the AP in the adjacent room. The reason is easy to 
understand because of the barrier of the walls. 

The strategy of moving to a geometric centroid position before measuring the RSSI values 
from the APs is meaningful and effective. We tested 5 times at each sampling point region of 
the 15 sampling positions which had 75 times tests in total. The recognized subareas are 
specific rooms or areas near the doorway and all of them are correctly identified. If the error 
is allowed to be within 0.5 meters, the initial coarse localization results had 68 times success 
localization. When the error range is extended to 1 meter, the success times is 73. A detailed 
data is shown in Table 1. 

Table 1. Coarse localization result using the proposed strategy 
Number 
of Tests 

Number of 
Correct Subareas 

Correct Subareas 
Rate (%) 

Success Rate 
within 0.5 m (%) 

Success Rate 
within 1.0 m (%) 

75 75 100 90.67 97.33 

We recorded the errors of all global localization tests and calculated the mean numerical of 
them. The result is shown in Table 2 where the localization error is compared with the work 
[26]. It demonstrates that our method needs the least number of APs to obtain more accurate 
positioning results. 

Table 2. Localization error using number of APs 

Method Number of APs Localization Error 
(m) Number of APs Localization Error 

(m) 

[26] 15 2.00 More than 30 1.10 

our 15 0.52 - - 

When compared with the solution introduced in the work [31] which used visual features 
to assist robot localization in the symmetrical environment, this work has some advantages. 
The previous work mainly focused on the closed areas which were geometrically symmetrical 
by using a laser rangefinder. At every moment, the robot has four possible orientations within 
the area enclosed by a square. Consequently, clues that could indicate directions were crucial 
for the mobile robot. However, a hypothetical condition was that the visual texture features in 
four directions were different. The mobile robot cannot handle multiple rooms with similar 
structure and visual appearance. On the contrary, the work of this paper can solve the above 
problems well. 

A supplementary experiment which is done by using the two methods verifies the above 
phenomenon and the result is shown in Table 3. Each method is tested 5 times at the sampling 
positions. In a single room, both the two methods can achieve 100% successful localization. 
Situation A means that all rooms have different visual appearance, while situation B means 
that all rooms have similar visual appearance. The method of this work can achieve 100% 
successful localization in situation B while the method [31] has low success rate. In the 
corridor environment, the method in this work still has the superiority. 
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Table 3. Localization success rate (%) compared to method [31] 

Method In a Single Room In All Rooms 
Situation A 

In All Rooms 
Situation B In the Corridor 

[31] 100 100 6.67 52 

our 100 100 100 84 

5. Conclusion 
In this work, to make up for the shortcomings of the Wi-Fi and laser Lidar based SLAM which 
are used to solve the localization problem in a geometrically similar indoor environment, we 
propose a coarse-to-fine paradigm. A novel approach is proposed by integrating Wi-Fi and 
laser SLAM. Firstly, a probabilistic occupancy grid map is built by using the laser SLAM 
techniques. Then, the mobile robot is controlled to move to a subarea and collect the distance 
data by using the laser rangefinder sensor. The range data are used to compute a geometric 
centroid of the local area. These centroid positions are selected as the sampling points where 
the Wi-Fi module mounted on the mobile robot is used to receive RSSI values. Thirdly, the 
mean numerical of the several times received signal strength values are stored into the 
fingerprint database along with coordinate of the associated sampling point. A position index 
correlates the RSSI and the position is also stored for the later search purpose in the 
localization phase. Finally, a coarse localization is realized by using RSSI value matching 
method and a fine localization is obtained by adopting an improved MCL algorithm. 
Experimental results indicate that our proposed approach achieves a 97.33% successful 
localization rate while traditional MCL method always fail. 

This work has effective localization result for the mobile robot in indoor environment with 
Wi-Fi access points. However, the solution does not consider the dynamic scenes or areas 
where no Wi-Fi signal covers. In the future, we will apply this scheme to more scenarios, such 
as large stations, factories, logistics parks, etc. 
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