• Title/Summary/Keyword: Position selective growth

Search Result 15, Processing Time 0.026 seconds

Effects of Selective Growth on Electron-emission Properties of Conical-type Carbon Nanotube Field-emitters (원추형 기판 위에 탄소 나노튜브의 선택적 성장이 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Noh, Young-Rok;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • In this study, for use of carbon nanotubes (CNTs) as a cold cathode of x-ray tubes, we examine the effects of selective growth of CNTs on their field emission properties and long-term stability. The selective growth of CNTs was performed by selectively etching the catalyst layer which was used for CNTs' nucleation. CNTs were grown on conical-type tungsten substrates using an inductively-coupled plasma chemical vapor deposition system. For all the grown CNTs, their morphologies and microstructures were analyzed by field-emission scanning electron microscope and Raman spectroscopy. The electron-emission properties of CNTs and the long-term stability of emission currents were measured and characterized according to the CNTs' growth position on the substrate.

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF

Electric Device Character and fabrication of advanced thin film including nano particles (나노입자가 내장된 기능성 박막의 제작과 전자소자 특성)

  • Ryu, Jeong-Tak;Ikuno, T;Honda, S.;Katayama, M.;Oura, K.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.66-71
    • /
    • 2006
  • Carbon nanofibers have synthesized a low temperature using DC Ar plasma and Fe-Phthalocyanine, and a characteristic difference of the synthesized CNF according to the location of the substrate was investigated. The carbon nanofibers had about 100nm diameter and up to $10{\mu}m$ length. These were grown in random orientation. There are two shapes in the CNFs, screw and straight line shapes. Furthermore, we found the selective growth of nanofibers on the scratched substrates. The density of CNFs synthesized on the position (a) were higher than that synthesized on the position (b) [See the Fig. 2]. Also, the length of CNFs was different. In the shape, CNFs with screw and straight line shape were synthesized in the position (a), but. only CNFs with straight line shape were synthesized in the position (b). The difference have an important effect on the field emission characteristics.

  • PDF

Selective Synthesis and Coating of ZnO Nanomaterials

  • Lee, Jong-Soo;Myungil Kang;Park, Kwangsue;Byungdon Min;Joowon Hwang;Kihyun Keem;Kim, Sangsig
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.314-320
    • /
    • 2002
  • Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at 138$0^{\circ}C$ from ball-milled ZnO powders by a thermal evaporation procedure with an argon carrier gas without any catalysts. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice plane, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice Planes, respectively. In cathodoluminescence (CL), the energy Position of the near band-edge (NBE) peak is 3.280 eV for the 100-, 250-, and 500-nm thick nanobelts, 3.262 eV for the 100- and 250-nm thick nanorods, and 3.237 eV for the 500-nm thick nanorods. The synthesized ZnO nanorods were coated conformally with aluminum oxide (Al$_2$O$_3$) material by atomic layer deposition (ALD). $Al_2$O$_3$films were then deposited on these ZnO nanorods by ALD at a substrate temperature of 300 $^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_2O$). Transmission electron microscopy (TEM) images of the deposited ZnO nanorods revealed that 40nm-thick $Al_2$O$_3$ cylindrical shells surround the ZnO nanorods.

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef

  • Zhang, Yimin;Zhu, Lixian;Dong, Pengcheng;Liang, Rongrong;Mao, Yanwei;Qiu, Shubing;Luo, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.585-594
    • /
    • 2018
  • Objective: This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. Methods: L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at $4^{\circ}C$ for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Results: The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p<0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). Conclusion: Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.

The Correction of a Secondary Bilateral Cleft Lip Nasal Deformity Using Refined Open Rhinoplasty with Reverse-U Incision, V-Y Plasty, and Selective Combination with Composite Grafting: Long-term Results

  • Cho, Byung-Chae;Choi, Kang-Young;Lee, Jung-Hun;Yang, Jung-Dug;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.39 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • Background : This article presents long-term outcomes after correcting secondary bilateral cleft lip nasal deformities using a refined reverse-U incision and V-Y plasty or in combination with a composite graft in order to elongate the short columella. Methods : A total of forty-six patients underwent surgery between September 1996 and December 2008. The age of the patients ranged from 3 to 19 years of age. A bilateral reverse-U incision and V-Y plasty were used in 24 patients. A composite graft from the helical root was combined with a bilateral reverse-U incision in the 22 patients who possessed a severely shortened columella. The follow-up period ranged between 2 and 10 years. Results : A total of 32 patients out of 46 were evaluated postoperatively. The average columella length was significantly improved from an average of 3.7 mm preoperatively to 8.5 mm postoperatively. The average ratio of the columella height to the alar base width was 0.18 preoperatively and 0.29 postoperatively. The postoperative basal and lateral views revealed a better shape of the nostrils and columella. The elongated columella, combined with a composite graft, presented good maintenance of the corrected position with no growth disturbance. A composite graft showed color mismatching in several patients. Twenty-six patients demonstrated no alar-columella web deformity and satisfactory symmetry of the nostrils. Four patients experienced a drooping and overhanging of the corrected alar-columella web. Conclusions : A bilateral reverse-U incision with V-Y plasty or in combination with a composite graft was effective in correcting secondary bilateral cleft lip nasal deformity.

Improvement of Cyclosporin A Hydroxylation in Sebekia benihana by Conjugational Transfer of Streptomyces coelicolor SCO4967, a Secondary Metabolite Regulatory Gene (Sebekia benihana에서 Streptomyces coelicolor SCO4967 유전자 도입을 통한 하이드록실 사이클로스포린 A의 생전환)

  • Kim, Hyun-Bum;Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • Actinomycetes are Gram-positive soil bacteria and one of the most important industrial microorganisms due to superior biosynthetic capabilities of many valuable secondary metabolites as well as production of various valuable bioconversion enzymes. Among them are cytochrome P450 hydroxylase (CYP), which are hemoproteins encoded by a super family of genes, are universally distributed in most of the organisms from all biological kingdoms. Actinomycetes are a rich source of soluble CYP enzymes, which play critical roles in the bioactivation and detoxification of a wide variety of metabolite biosynthesis and xenobiotic transformation. Cyclosporin A (CyA), one of the most commonly-prescribed immunosuppressive drugs, was previously reported to be hydroxylated at the position of 4th N-methyl leucine by a rare actinomycetes called Sebekia benihana, leading to display different biological activity spectrum such as loss of immunosuppressive activities yet retaining hair growth-stimulating side effect. In order to improve this regio-selective CyA hydroxylation in S. benihana, previously-identified several secondary metabolite up-regulatory genes from Streptomyces coelicolor and S. avermitilis were heterologously overexpressed in S. benihana using an $ermE^*$ promoter-containing Streptomyces integrative expression vector. Among tested, SCO4967 encoding a conserved hypothetical protein significantly stimulated region-specific CyA hydroxylation in S. benihana, implying that some common regulatory systems functioning in both biosynthesis and bioconversion of secondary metabolite might be present in different actinomycetes species.

Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S Containing Triple Mutations

  • Duggirala, Krishna Babu;Lee, Yujin;Lee, Kwangho
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase widely expressed in many cancers such as non-small cell lung cancer (NSCLC), pancreatic cancer, breast cancer, and head and neck cancer. Mutations such as L858R in exon 21, exon 19 truncation (Del19), exon 20 insertions, and others are responsible for aberrant activation of EGFR in NSCLC. First-generation EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib have clinical benefits for EGFR-sensitive (L858R and Del19) NSCLC patients. However, after 10-12 months of treatment with these inhibitors, a secondary T790M mutation at the gatekeeper position in the kinase domain of EGFR was identified, which limited the clinical benefits. Second-generation EGFR irreversible inhibitors (afatinib and dacomitinib) were developed to overcome this T790M mutation. However, their lack of selectivity toward wild-type EGFR compromised their clinical benefits due to serious adverse events. Recently developed third-generation irreversible EGFR TKIs (osimertinib and lazertinib) are selective toward driving mutations and the T790M mutation, while sparing wild-type EGFR activity. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S, the key residue cysteine that forms covalent bonds with irreversible inhibitors. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are not effective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism.