Browse > Article

Improvement of Cyclosporin A Hydroxylation in Sebekia benihana by Conjugational Transfer of Streptomyces coelicolor SCO4967, a Secondary Metabolite Regulatory Gene  

Kim, Hyun-Bum (Department of Biological Engineering, Inha University)
Lee, Mi-Jin (Department of Biological Engineering, Inha University)
Han, Kyu-Boem (CHA BIO & DIOSTECH Bio Pharmaceutical Research Institute)
Kim, Eung-Soo (Department of Biological Engineering, Inha University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.4, 2010 , pp. 475-480 More about this Journal
Abstract
Actinomycetes are Gram-positive soil bacteria and one of the most important industrial microorganisms due to superior biosynthetic capabilities of many valuable secondary metabolites as well as production of various valuable bioconversion enzymes. Among them are cytochrome P450 hydroxylase (CYP), which are hemoproteins encoded by a super family of genes, are universally distributed in most of the organisms from all biological kingdoms. Actinomycetes are a rich source of soluble CYP enzymes, which play critical roles in the bioactivation and detoxification of a wide variety of metabolite biosynthesis and xenobiotic transformation. Cyclosporin A (CyA), one of the most commonly-prescribed immunosuppressive drugs, was previously reported to be hydroxylated at the position of 4th N-methyl leucine by a rare actinomycetes called Sebekia benihana, leading to display different biological activity spectrum such as loss of immunosuppressive activities yet retaining hair growth-stimulating side effect. In order to improve this regio-selective CyA hydroxylation in S. benihana, previously-identified several secondary metabolite up-regulatory genes from Streptomyces coelicolor and S. avermitilis were heterologously overexpressed in S. benihana using an $ermE^*$ promoter-containing Streptomyces integrative expression vector. Among tested, SCO4967 encoding a conserved hypothetical protein significantly stimulated region-specific CyA hydroxylation in S. benihana, implying that some common regulatory systems functioning in both biosynthesis and bioconversion of secondary metabolite might be present in different actinomycetes species.
Keywords
Streptomyces; Sebekia benihana; cyclosporin; hydroxylation; secondary metabolite; regulatory gene;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Dorner, E. and M. Boll. 2002. Properties of 2-oxoglutarate: Ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring. J. Bacteriol. 184: 3975-3983.   DOI   ScienceOn
2 Paradkar, A., A. Trefzer, R. Chakraburtty, and D. Stassi. 2003. Streptomyces genetics: A genomic perspective. Crit. Rev. Biotechnol. 23: 1-27.   DOI   ScienceOn
3 Schmitt, L. and R. Tampe. 2002. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12: 754-760.   DOI   ScienceOn
4 Roberts, G. A., G. Grogan, A. Greter, S. L. Flitsch, and N. J. Turner. 2002. Identification of a new class of cytochrome P450 from a Rhodococcus sp. J. Bacteriol. 184: 3898-3908.   DOI   ScienceOn
5 Sambrook J., Fritsch E. F., and Maniatis T. 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York.
6 Van Veen, H. W., A. Margolles, M. Muller, C. F. Higgins, and W. N. Konings. 2000. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19: 2503-2514.   DOI
7 Vaufrey, F., A. M. Delort, G. Jeminet, and G. Dauphin. 1990. Bioconversion of monensin by a soil bacterium, Sebekia benihana. J. Antibiot. 43: 1189-1191.   DOI
8 Resch, K. and M. Szamel. 1997. Molecular mechanisms of the immunosuppressive action of cyclosporin A. Int. J. Immunopharmacol. 19: 579-585.   DOI   ScienceOn
9 Rawat, M., S. Kovacevic, H. Billman-Jacobe, and Y. Av- Gay. 2003. Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology. 149: 1341-1349.   DOI   ScienceOn
10 Rawat, M., M. Uppal, G. Newton, M. Steffek, R. C. Fahey, and Y. Av-Gay. 2004. Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J. Bacteriol. 186: 6050-6058.   DOI   ScienceOn
11 Kieser, T., M. J. Bibb, K. F. Chater, M. J. Butter, and D. A. Hopwood. 2000. Streptomyces genetics: A laboratory manual. John Innes Foundation, Norwich, UK.
12 GuagueIre, E., J. Steffan, and T. Olivry. 2004. Cyclosporin A: A new drug in the field of canine dermatology. Vet. Dermatol. 15: 61-74.
13 Park, J.-H., C.-J. Cha, and J.-H. Roe. 2006. Identification of genes for mycothiol biosynthesis in Streptomyces coelicolor A3(2). J. Microbiol. 44: 121-125.   과학기술학회마을
14 Park, N. S., J. S. Myeong, H.-J. Park, K. Han, S.-N. Kim, and E.-S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191.   과학기술학회마을
15 Park, N.-S., H.-J. Park, K. Han, and E.-S. Kim. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 16: 295-298.   과학기술학회마을
16 Choi, S.-U., C.-K. Lee, Y.-I. Hwang, H. Kinoshita, and T. Nihira. 2004. Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch. Microbiol. 181: 294-298.   DOI   ScienceOn
17 Delort, A. M., G. Jeminet, M. Sancelme, and G. Dauphin. 1988. Microbial conversion of nigericin in three successive steps, by Sebekia benihana. J. Antibiot. 41: 916-924.   DOI
18 Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan, and R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356.   DOI   ScienceOn
19 Im, J.-H., M.-G. Kim, and E.-S. Kim. 2007. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J. Microbiol. Biotechnol. 17: 534-538.   과학기술학회마을
20 Kang, S.-H., J. Huang, H.-N. Lee, Y.-A. Hur, S. N. Cohen, and E.-S. Kim. 2007. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 189: 4315-4319.   DOI   ScienceOn
21 Kuhnt, M., F. Bitsch, J. France, H. Hofmann, J. -J. Sanglier, and R. Traber. 1996. Microbial biotransformation products of cyclosporin A. J. Antibiot. 49: 781-787.   DOI   ScienceOn
22 Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao. 2004. Reverse engineering of industrial pharmaceuticalproducing actinomycete strains using DNA microarrays. Metab. Eng. 6: 186-196.   DOI   ScienceOn
23 Hasegawa, H. and C. C. Häse. 2009. TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Appl. Environ. Microbiol. 75: 7602-7609.   DOI   ScienceOn
24 Duong, C. T. P., H.-N. Lee, S.-S. Choi, S. Y. Lee, and E.-S. Kim. 2009. Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J. Microbiol. Biotechnol. 19: 136-139.   과학기술학회마을   DOI
25 Asai, K., H. Yamaguchi, C.-M. Kang, K. -I. Yoshida, Y. Fujita, and Y. Sadaie. 2003. DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. FEMS Microbiol. Lett. 220: 155-160.   DOI   ScienceOn
26 Bìhal, V. 2000. Bioactive products from Streptomyces. Adv. Appl. Microbiol. 47: 113-156.   DOI
27 Noh, J.-H., S.-H. Kim, H.-N. Lee, S. Y. Lee, and E.-S. Kim. 2010. Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Appl. Microbiol. Biotechnol. 86: 1145-1153.   DOI   ScienceOn
28 Guilfoile, P. G. and C. R. Hutchinson. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. U. S. A. 88: 8553-8557.   DOI   ScienceOn
29 Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46: 47-110.   DOI
30 Cao, M., L. Salzberg, C. S. Tsai, T. Mascher, C. Bonilla, T. Wang, R. W. Ye, L. Marquez-Magana, and J. D. Helmann. 2003. Regulation of the Bacillus subtilis extracytoplasmic function protein oY and its target promoters. J. Bacteriol. 185: 4883-4890.   DOI   ScienceOn
31 Hughes, N. J., C. L. Clayton, P. A. Chalk, and D. J. Kelly. 1998. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate flavodoxin and 2-oxoglutarate: Acceptor oxidoreductases which mediate electron transport to NADP. J. Bacteriol. 180: 1119-1128.
32 Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of streptomyces. A laboratory manual. 161-211.