Browse > Article

Selective Synthesis and Coating of ZnO Nanomaterials  

Lee, Jong-Soo (Dept. of Electrical Engineering, Korea University)
Myungil Kang (Dept. of Electrical Engineering, Korea University)
Park, Kwangsue (Dept. of Electrical Engineering, Korea University)
Byungdon Min (Dept. of Electrical Engineering, Korea University)
Joowon Hwang (Dept. of Electrical Engineering, Korea University)
Kihyun Keem (Dept. of Electrical Engineering, Korea University)
Kim, Sangsig (Dept. of Electrical Engineering, Korea University)
Publication Information
KIEE International Transactions on Electrophysics and Applications / v.2C, no.6, 2002 , pp. 314-320 More about this Journal
Abstract
Three different ZnO nanomaterials (nanobelts, nanorods, and nanowires) were synthesized at 138$0^{\circ}C$ from ball-milled ZnO powders by a thermal evaporation procedure with an argon carrier gas without any catalysts. Transmission electron microscopy (TEM) revealed that the ZnO nanobelts are single crystalline with the growth direction perpendicular to the (010) lattice plane, and that the ZnO nanorods and nanowires are single crystalline with the growth directions perpendicular to the (001) and (110) lattice Planes, respectively. In cathodoluminescence (CL), the energy Position of the near band-edge (NBE) peak is 3.280 eV for the 100-, 250-, and 500-nm thick nanobelts, 3.262 eV for the 100- and 250-nm thick nanorods, and 3.237 eV for the 500-nm thick nanorods. The synthesized ZnO nanorods were coated conformally with aluminum oxide (Al$_2$O$_3$) material by atomic layer deposition (ALD). $Al_2$O$_3$films were then deposited on these ZnO nanorods by ALD at a substrate temperature of 300 $^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_2O$). Transmission electron microscopy (TEM) images of the deposited ZnO nanorods revealed that 40nm-thick $Al_2$O$_3$ cylindrical shells surround the ZnO nanorods.
Keywords
ZnO nanomaterials; atomic layer deposition (ALD); selective synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Klingshirn, Phys. Status Solidi B 71 (1975) 547
2 R. F. Service, Science 276 (1997) 895   DOI   ScienceOn
3 D. M. bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto, Appl. Phys. Lett. 73 (1998) 103
4 W. Han, S. Fan, Q. Li, Y. Hu: Science 277 (1997) 1287
5 J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, Y. C. Lan: J. Cryst. Growth 213 (2000) 408
6 Y. Nakagome, and K. Itoh, IEICE Trans. E-74, (1991) 799
7 J. M. Hvam, Phys. Rev. B 4 (1971) 4459
8 Z. W. Pan, Z. R Dai,Z. L. Wang: Science 291 (2001) 1947
9 Y. Kim, S. M. Lee, C. S. Park, S, I, Lee, and M. Y. Lee, Appl. Phys. Lett. 71, (1997) 3604
10 Kwangsue Park, Jong-Soo Lee, Man. Young Sung, Sangsig Kim, accepted to Japanese Journal of applied physics, (2002. 9)
11 Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charies M. Lieber, nature, 409 (2001) 66
12 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang: Adv. Mater. 13 (2001) 113
13 A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M.George, Thin Solid Films 292, (1997) 135
14 Y. F.Clen, D.M Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J.Appl Phys. 84(1998)3912
15 W.S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 345 (2001) 37.
16 H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng: Solid State Commun. 109 (1999) 677
17 Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science, 292 (2001) 1897
18 N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579