• Title/Summary/Keyword: Position/Velocity Control

Search Result 646, Processing Time 0.029 seconds

An Implementation of a Decoupled GPS/DR Integration Kalman Filter (분리형 GPS/DR 통합 칼만 필터 구현)

  • Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.928-935
    • /
    • 2000
  • In order to improve the performance of a GPS/DR integration system, the error sources of DR sensors should be modeled accurately, This results in the increases in the dimension of the integration filter and, consequently, computational load becomes large. To reduce the computational load, suggested in this paper is a decoupled GPS/DR integration scheme that consists of two cascaded Kalman filters. The GPS velocity output is used in the first filter to calibrate the DR sensor and to fix the velocity as well. The velocity from the first filter is fed to the second filter where the position is corrected using the GPS position output. Experimental results show that the proposed integration scheme has positioning performance comparable to the conventional coupled one, while its computation is reduced to about 2/3.

  • PDF

Precision Control of Belt Drives using Feed Forward Compensator under Acceleration and Velocity Constraints (속도와 가속도 제한에서 전향 보상기를 이용한 벨트 구동의 정밀제어)

  • Kwon, Sei-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.713-720
    • /
    • 2009
  • Numerous applications of position controlling devices using servoing technique and transmission of energy through belt drives are practiced in the industry. Belt drive is a simple, lightweight, low cost power transmission system. Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. In this paper, precision positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method is demonstrated through computer simulation and experimental results.

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

A Study on the ship movement estimation by using Kalman filter (칼만필터를 이용한 선박 거동 예측에 관한 연구)

  • Le, Dang-Khanh;Kim, Jin-Man;Nam, Taek-Kun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.261-262
    • /
    • 2012
  • In this research, intelligent protection system for laser boat is introduced. The function of system is to measure the distance and velocity of object from our boat and generate control signals to avoid collision with moving targets. A novel approach to estimate object's position from our ship is tackled on this paper. To do this laser sensors are used to measure distance from ship to targets. The ship position and velocity is estimated by th Kalman filter algorithm. In the real phase, the filtering method will be applied to process signal gathered by laser sensors. Simulation to estimate ship's position and velocity under noise are executed and the results are introduced to show the effectiveness of the algorithm.

  • PDF

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

A study on robustness of automatic seam tracking system (용접선 자동추적장치의 강인성에 관한 연구)

  • 강희신;조택동;양상민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.775-778
    • /
    • 1996
  • In this research, the robustness of a seam tracking for the automatic welding system is studied. The laser displacement sensor is used as a seam finder. X-Y moving table drived by ac servo motor controls the position and velocity of the torch-and-sensor part. However, dc servo motor is used to control the position and velocity of the torch. The sensor locates ahead of torch to preview the weld line, and brings about the inaccuracy on the torch tracking. To enhance the robustness on this system against the influence of disturbances and model uncertainty, H$\_$.inf./ control is applied to the angular motion of torch. The simulation shows that the tracking accuracy improved significantly. Also, experimental results give a good performance of H$\_$.inf./ control strategy to the automatic seam tracking system for the welding.

  • PDF

Tip position control of translational 1-link flexible arm with tip mass (Tip mass를 갖는 병진운동 1-링크 탄성암 선단의 위치제어)

  • 이영춘;방두열;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1036-1041
    • /
    • 1993
  • The tip of the flexible robot arm has to be controlled by the active control reducing vibration because it has residual vibration after getting to desired position. This paper presents an end-point position control of a 1-link flexible robot arm having tip mass by the PID control algorithm. The system is composed of a flexible arm with tip mass, dc servomotor and ballscrew mechanism under translational motion. The feedback signal composed of the tip displacement measured by laser sensor, estimated velocity and acceleration is used to control the base motion. Theoretical results are obtained by applying the Laplace transform and the numerical inversion method to the governing equations. After the flexible robot arm reaches to. the desired position, the residual vibration is controlled by the PID algorithm. This paper gives the simulation and experimental results of end-point responses according to changing tip-mass and arm length. And this algorithm shows good effects of reducing the residual vibration. Approximately, theoretical response is in good agreement with experimental one.

  • PDF

High Resolution Position Control of Linear Permanent Magnet Synchronous Motor for SMD Placement System (SMD Mounter용 선형 영구자석 동기기의 고정밀 위치제어)

  • Kim, Jang-Hwan;Sul, Seung-Ki;Jeon, Jeong-Yul;Choi, Yun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.314-316
    • /
    • 2001
  • This paper present the position control method for the application of permanent magnet linear synchronous motor. Controller is designed as a conventional P-PI controller, but the extra information is used such as velocity and acceleration from motion profiles. The profiles comes from S-Curve which is an optimized point-to-point motion profiles to achieve fast motions with minimum vibration[2]. In this application, the targets of the position control are maximum 10um position error within 10msec after respective ending point of position profiles. The implementation of the controller has been done in full digital way. All the controller is designed on the DSP TMS320VC33 control board. To prove performance of the controller, the experiment was performed with a servo linear motor.

  • PDF

High Performance Velocity and Position Controller for Induction Motors (유도 전동기 고성능 속도 및 위치 제어기)

  • Yim, Chung-Hyuk;Kim, Chang-Hwan;Kim, Dong-Il;Kim, Sung-Kwon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.281-284
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controllers for induction motors, and succeeded in mass production for the first time in Korea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present, we adopted the controller as spindle motor drive for Samsung CNC systems, and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF