• Title/Summary/Keyword: Portfolio at Risk

Search Result 81, Processing Time 0.022 seconds

Optimum Risk-Adjusted Islamic Stock Portfolio Using the Quadratic Programming Model: An Empirical Study in Indonesia

  • MUSSAFI, Noor Saif Muhammad;ISMAIL, Zuhaimy
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.839-850
    • /
    • 2021
  • Risk-adjusted return is believed to be one of the optimal parameters to determine an optimum portfolio. A risk-adjusted return is a calculation of the profit or potential profit from an investment that takes into account the degree of risk that must be accepted to achieve it. This paper presents a new procedure in portfolio selection and utilizes these results to optimize the risk level of risk-adjusted Islamic stock portfolios. It deals with the weekly close price of active issuers listed on Jakarta Islamic Index Indonesia for a certain time interval. Overall, this paper highlights portfolio selection, which includes determining the number of stocks, grouping the issuers via technical analysis, and selecting the best risk-adjusted return of portfolios. The nominated portfolio is modeled using Quadratic Programming (QP). The result of this study shows that the portfolio built using the lowest Value at Risk (VaR) outperforms the market proxy on a risk-adjusted basis of M-squared and was chosen as the best portfolio that can be optimized using QP with a minimum risk of 2.86%. The portfolio with the lowest beta, on the other hand, will produce a minimum risk that is nearly 60% lower than the optimal risk-adjusted return portfolio. The results of QP are well verified by a heuristic optimizer of fmincon.

FUZZY RISK MEASURES AND ITS APPLICATION TO PORTFOLIO OPTIMIZATION

  • Ma, Xiaoxian;Zhao, Qingzhen;Liu, Fangai
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.843-856
    • /
    • 2009
  • In possibility framework, we propose two risk measures named Fuzzy Value-at-Risk and Fuzzy Conditional Value-at-Risk, based on Credibility measure. Two portfolio optimization models for fuzzy portfolio selection problems are formulated. Then a chaos genetic algorithm based on fuzzy simulation is designed, and finally computational results show that the two risk measures can play a role in possibility space similar to Value-at-Risk and Conditional Value-at-Risk in probability space.

  • PDF

Determination Conversion Weight of Convertible Bonds Using Mean/Value-at-Risk Optimization Models (평균/VaR 최적화 모형에 의한 전환사채 주식전환 비중 결정)

  • Park, Koohyun
    • Korean Management Science Review
    • /
    • v.30 no.3
    • /
    • pp.55-70
    • /
    • 2013
  • In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.

An emmpirical test of the portfolio diversification effects (Evidence from KOSPI and KOSDAQ) (KOSPI와 KOSDAQ의 포트폴리오 분산효과 실증분석)

  • Lee, Young-Hywan;Yoon, Hong-Geun;Shin, Ju-Bum
    • Journal of Industrial Convergence
    • /
    • v.5 no.1
    • /
    • pp.45-59
    • /
    • 2007
  • This paper empirically examines the portfolio diversification effect using data from both KOSPI and KOSDAQ. In KOSPI market, portfolio diversification effect disappears when more than 18 stocks are added in the portfolio. About 63% of portfolio risk is eliminated. In KOSDAQ market, the maximum portfolio diversification effect is achieved when 17 stocks are at least included in a portfolio. The maximum cumulative risk reduction is 35%.

  • PDF

Value at Risk of portfolios using copulas

  • Byun, Kiwoong;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.59-79
    • /
    • 2021
  • Value at Risk (VaR) is one of the most common risk management tools in finance. Since a portfolio of several assets, rather than one asset portfolio, is advantageous in the risk diversification for investment, VaR for a portfolio of two or more assets is often used. In such cases, multivariate distributions of asset returns are considered to calculate VaR of the corresponding portfolio. Copulas are one way of generating a multivariate distribution by identifying the dependence structure of asset returns while allowing many different marginal distributions. However, they are used mainly for bivariate distributions and are not widely used in modeling joint distributions for many variables in finance. In this study, we would like to examine the performance of various copulas for high dimensional data and several different dependence structures. This paper compares copulas such as elliptical, vine, and hierarchical copulas in computing the VaR of portfolios to find appropriate copula functions in various dependence structures among asset return distributions. In the simulation studies under various dependence structures and real data analysis, the hierarchical Clayton copula shows the best performance in the VaR calculation using four assets. For marginal distributions of single asset returns, normal inverse Gaussian distribution was used to model asset return distributions, which are generally high-peaked and heavy-tailed.

A Risk-Return Analysis of Loan Portfolio Diversification in the Vietnamese Banking System

  • HUYNH, Japan;DANG, Van Dan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.105-115
    • /
    • 2020
  • The study empirically examines the effects of loan portfolio diversification on bank risk and return in the nascent banking market of Vietnam. Loan portfolio diversification is captured through the Hirschman-Herfindahl index and the Shannon Entropy with sectoral exposures. We access each bank's financial reports to collect the required data, especially the breakdown of sectoral loan portfolios, thus constituting a unique dataset. To compute bank return, we use the traditional accounting indicators, including return-on-assets, return-on-equity, and net-interest margin. For bank risk, we utilize the loan-loss provisions and non-performing loans relative to gross customer loans. Using a sample of 30 commercial banks over the period from 2008 to 2019 and the system generalized method of moments estimator for the dynamic panel, we indicate the downsides of portfolio diversification. Concretely, we observe that all diversification measures exhibit significantly negative signs in all regressions across different bank return proxies. At the same time, the estimates display the significant and positive impact of diversification on the non-performing loan ratio. Hence, sectoral loan portfolio diversification significantly hampers bank performance in both aspects of lower return and higher credit risk. The results are robust across a rich set of bank performance and portfolio diversification measures.

An Application of the Smart Beta Portfolio Model: An Empirical Study in Indonesia Stock Exchange

  • WASPADA, Ika Putera;SALIM, Dwi Fitrizal;FARISKA, Putri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.45-52
    • /
    • 2021
  • Stock price fluctuations affect investor returns, particularly, in this pandemic situation that has triggered stock market shocks. As a result of this situation, investors prefer to move their money into a safer portfolio. Therefore, in this study, we approach an efficient portfolio model using smart beta and combining others to obtain a fast method to predict investment stock returns. Smart beta is a method to selects stocks that will enter a portfolio quickly and concisely by considering the level of return and risk that has been set according to the ability of investors. A smart beta portfolio is efficient because it tracks with an underlying index and is optimized using the same techniques that active portfolio managers utilize. Using the logistic regression method and the data of 100 low volatility stocks listed on the Indonesia stock exchange from 2009-2019, an efficient portfolio model was made. It can be concluded that an efficient portfolio is formed by a group of stocks that are aggressive and actively traded to produce optimal returns at a certain level of risk in the long-term period. And also, the portfolio selection model generated using the smart beta, beta, alpha, and stock variants is a simple and fast model in predicting the rate of return with an adjusted risk level so that investors can anticipate risks and minimize errors in stock selection.

Properties of alternative VaR for multivariate normal distributions (다변량 정규분포에서 대안적인 VaR의 특성)

  • Hong, Chong Sun;Lee, Gi Pum
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1453-1463
    • /
    • 2016
  • The most useful financial risk measure may be VaR (Value at Risk) which estimates the maximum loss amount statistically. The VaR tends to be estimated in many industries by using transformed univariate risk including variance-covariance matrix and a specific portfolio. Hong et al. (2016) are defined the Vector at Risk based on the multivariate quantile vector. When a specific portfolio is given, one point among Vector at Risk is founded as the best VaR which is called as an alternative VaR (AVaR). In this work, AVaRs have been investigated for multivariate normal distributions with many kinds of variance-covariance matrix and various portfolio weight vectors, and compared with VaRs. It has been found that the AVaR has smaller values than VaR. Some properties of AVaR are derived and discussed with these characteristics.

OPTIMAL CONSUMPTION, PORTFOLIO, AND LIFE INSURANCE WITH BORROWING CONSTRAINT AND RISK AVERSION CHANGE

  • Lee, Ho-Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.375-383
    • /
    • 2016
  • This paper investigates an optimal consumption, portfolio, and life insurance strategies of a family when there is a borrowing constraint and risk aversion change at the time of death of the breadwinner. A CRRA utility is employed and by using the dynamic programming method, we obtain analytic expressions for the optimal strategies.

Conditional Value-at-Risk Optimization for Conversion of Convertible Bonds (전환사채 주식전환을 위한 조건부 VaR 최적화)

  • Park, Koo-Hyun;Shim, Eun-Tak
    • Korean Management Science Review
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2011
  • In this study we suggested two optimization models to answer a question from an investor standpoint : how many convertible bonds should one convert, and how many keep? One model minimizes certain risk to the minimum required expected return, the other maximizes the expected return subject to the maximum acceptable risk. In comparison with Markowitz portfolio models, which use the variance of return, our models used Conditional Value-at-Risk(CVaR) for risk measurement. As a coherent measurement, CVaR overcomes the shortcomings of Value-at-Risk(VaR). But there are still difficulties in solving CVaR including optimization models. For this reason, we adopted Rockafellar and Uryasev's[18, 19] approach. Then we could approximate the models as linear programming problems with scenarios. We also suggested to extend the models with credit risk, and applied examples of our models to Hynix 207CB, a convertible bond issued by the global semiconductor company Hynix.