The Port of Busan is currently ranked as the seventh largest container port worldwide in terms of cargo throughput. However, port competition in the Far-East region is fierce. The growth rate of container throughput handled by the port of Busan has recently slowed down. In this study, we analyzed how economic conditions and multiple external shocks could influence cargo throughput and identified potential implications for port business. The aim of this study was to build a model to accurately forecast port throughput using the ARIMA model, which could incorporate external socio-economic shocks, and the VEC model considering causal variables having long-term effects on transshipment cargo. Findings of this study suggest that there are three main areas affecting container throughput in the port of Busan, namely the Russia-Ukraine war, the increased competition for transshipment cargo of Chinese ports, and the weaker growth rate of the Korean economy. Based on the forecast, in order for the Port of the Port of Busan to continue to grow as a logistics hub in Northeast-Asia, policy intervention is necessary to diversify the demand for transshipment cargo and maximize benefits of planned infrastructural investments.
본 연구는 1992년부터 2011년까지 월별자료를 사용하여 여러 가지 시계열 추정모델과 승법 계절 ARIMA 모형을 설정하여 부산항의 컨테이너 물동량을 추정하고 예측하였다. 여러 가지 모델로 추정한 결과 부산항의 컨테이너 물동량과 물동량 변동 모두 계절을 승법한 ARIMA 모델 $(1,0,1){\times}(1,0,1)_{12}$로 추정하였을 때, 추정결과와 Akaike information, Schwarz, Hannan-Quin 기준 등으로 보아, 가장 좋은 ARIMA 추정과 예측 모형으로 나타났다. 그리하여 부산항 물동량 추정의 최적모형인 ARIMA $(1,0,1){\times}(1,0,1)_{12}$ 모형에 의해 향후 8년간 96개월에 대한 부산항 물동량 미래 예측치(2013-2020년)를 월별로 추정하여 예측한 결과 2013년부터 부산의 물동량은 연도별로 조금씩 지속적으로 증가하는 추세를 보일 것으로 나타났다. ARIMA $(1,0,1){\times}(1,0,1)_{12}$ 모형에 의한 부산항의 컨테이너 물동량의 연도별 예측량은 2013년 1천 891만 TEU, 2014년 2천 34만 TEU, 2015년 2천 188만 TEU, 2016년 2천 353만 TEU, 2017년 2천 531만 TEU, 2018년 2천 722만 TEU 그리고 2020년 3천 148만 TEU 등으로 나타났다.
본 연구에서는 항만의 단기 물동량을 예측하기 위해 ARIMA 모형과 CART 모형을 활용한 단기 수요예측 모형을 제시하였다. 제시한 모형은 2단계로 구성된다. 1단계에서는 시계열 예측치와 주요 교역국의 주당 근로일수를 변수로 사용하여 CART 모형을 추정하고 주별 물동량 예측을 진행한다. 2단계에서는 1단계에서 도출한 예측치와 요일 정보, 주요국 공휴일 정보, 주요국 행사 기간 정보를 설명변수로 활용하여 최종적인 일별 물동량 예측 모형을 추정한다. 제시한 수요예측 모형을 활용하여 2020년 10월 1일부터 12월 31일까지 92일의 부산항 물동량을 예측한 결과 제시한 모형의 평균 정확도가 기존 시계열 모형보다 '22.5%' 높은 것으로 나타났다. 제시 모형은 일별 물동량의 추세뿐만 아니라 물동량이 급등락하는 지점에서도 높은 정확도를 보였으며 시계열 예측 모형을 사용했을 때 비해 총 166,504(TEU)의 오차를 줄일 수 있는 것으로 나타났다. 항만의 효율적인 운영을 위해 필수적인 단기 물동량 예측에 적합한 예측 모형을 제시한 본 연구는 충분한 활용 가치가 있을 것으로 판단된다.
본 연구에서는 기존의 물동량 전망에 적용한 방법론이 아닌 개별 항만별 예측방법을 적용하여 인천항에서 경유하는 수출 화물 물동량을 전망하였다. 물동량 전망에 있어 기존의 통계적, 계량경제학적인 분석 대신 시스템 분석을 적용하였다. 대부분의 기존연구에서 적용하였던 총량적 접근방법은 전국의 총 화물물동량을 각 품목별 특성에 따른 계량모형을 통해 추정한다. 이는 전국권역을 기반으로 항만 O/D에 따라 향후 권역별 항만 개발계획 및 개별입지변화를 반영하여 체계적인 방법으로 배분함으로써 전국 항만의 물동량을 도출했다. 본 연구에서는 이러한 기존방법론이 아닌 개별항만의 주변상창이나 직접적인 영향을 미치는 산업단지의 현황을 토대로 물동량을 도출해 내는 방법이다. 본 연구에 있어 기초자료는 인천항을 배후권역으로 하는 수출 화물의 기종점인 배후산업단지의 소요면적에 대한 자료를 토대로 조사하였다. 이는 수출의 대부분을 창출하는 산업단지의 소요면적을 파악하여 이에 원단위를 적용함으로써 산단별 입출되는 물량을 도출할 수 있다. 여기에 산단별 분양률, 업종비중, 가동률, 그리고 산단별 수출 비중을 적용하여 인천항의 수출 화물 물동량을 전망하였다. 본 연구는 기존의 전망치와 비교를 함으로써 연구방법론의 다양화와 비교연구를 수행하는 연구성과를 거두었다.
최근에는 딥러닝과 빅데이터를 기반으로 한 수요예측 기술이 전자상거래, 물류, 유통 분야의 스마트화를 가속화하고 있다. 특히, 글로벌 운송 네트워크와 현대적인 지능형 물류의 중심인 항만은 4차 산업혁명으로 인한 세계 경제 및 항만 환경의 변화에 발 빠르게 대응하고 있습니다. 항만물동량 예측은 신항만 건설, 항만확장, 터미널 운영 등 다양한 분야에서 중요한 영향을 담당하고 있다. 따라서 본 연구의 목적은 항만 물동량 예측에 자주 쓰이는 시계열 분석과 타 산업에서 좋은 결과를 도출해내고 있는 딥러닝 분석을 비교하여 부산항의 미래 컨테이너 예측에 적합한 예측모델을 제시하는 것이다. 부산항 컨테이너 물동량을 이용하여 학습시키고 그 이후 물동량 예측을 진행하였다. 또한, 상관관계 분석을 통해 물동량 변화와 관련된 외부변수를 선정하여 다변량 딥러닝 예측모델에 적용하였다. 그 결과 부산항 컨테이너 물동량만 이용한 단일변수 예측모델에서 LSTM의 오차가 가장 낮았고, 외부변수를 이용한 다변수 예측모델에서도 LSTM의 성능이 가장 우수하였다.
우리나라 수출의 97.5%, 수입의 87.2%가 해상운송으로 이뤄지며 항만이 한국 경제의 중요한 구성요소이다. 이러한 항만의 효율적인 운영을 위해서는 항만 물동량의 단기 예측을 통해 개선시킬 수가 있으며 과학적인 연구방법이 필요하다. 이전 연구는 주로 장기예측을 기반으로 대규모 인프라투자를 위한 연구에 중점을 두었으며 컨테이너 항만물동량에만 집중한 측면이 크다. 본 연구는 국내 대표적인 석유항만인 울산항의 석유 및 가스화물 물동량에 대한 단기 예측을 수행하였으며 딥러닝 모델인 LSTM(Long Short Term Memory) 모델을 사용하여 RMSE기준으로 예측성능을 확인하였다. 본 연구의 결과는 석유 및 가스화물 물동량 수요 예측의 정확도를 높여 항만 운영의 효율성을 개선하는 근거가 될 수 있을 것으로 기대된다. 또한 기존 연구의 한계로 컨테이너 항만 물동량뿐만 아니라 석유 및 가스화물 물동량 예측에도 LSTM의 활용할 수 있다는 가능성을 확인할 수 있으며 향후 추가 연구를 통해 일반화가 가능할 것으로 기대된다.
항만 성능에 대한 정확한 평가는 컨테이너 물동량은 매우 중요한 요소이며, 효과적인 항만 개발 및 운영 전략에 대한 정확한 예측이 필수적이다. 하지만 해양 산업의 급격한 변화로 인해 컨테이너 물동량 예측의 정확성이 향상되기는 어렵다. 이를 해결하기 위해 사물인터넷(IoT)을 이용한 항만 성능에 미치는 영향을 분석하여 부산항의 경쟁력과 효율성을 향상시키기 위해 적용이 필요하다. 이에 본 연구에서는 부산항의 미래 컨테이너 물동량을 예측하기 위한 예측 모델을 개발하는 것을 목표로 이를 통해 항만 관리 기관의 개선된 의사 결정과 항만 생산성을 향상시키는 데 초점을 맞추고 있다. 항만 컨테이너 물동량을 예측하기 위해 본 연구에서는 기계 학습 모델의 Extreme Gradient Boosting (XGBoost) 기법을 도입하였다. XGBoost는 다른 알고리즘에 비해 높은 정확도, 빠른 학습 및 예측 속도,과적합을 방지하고 Feature Importance 제공하는 장점이 돋보인다. 특히 XGBoost는 회귀 예측 모델링에 직접 사용할 수 있어 기존 연구에서 제시된 물동량 예측 모델의 정확도 향상에 도움이 된다. 이를 통해 본 연구는 4.3% MAPE (Mean absolute percenture error) 값으로 제안된 방법이 컨테이너 물동량을 정확하고 신뢰성 있게 예측할 수 있다. 본 연구에서 제시한 방법론을 통해서 부산 컨테이너물동량의 정확성을 높일 수 있을 것으로 판단된다.
본 논문은 부산 신항 배후단지에 대한 경제성평가로써, 항만 배후단지 투자에 대한 편익-비용분석을 이용한 실증분석으로 이루어졌다. 항만 배후단지 경제성평가를 위해 항만 배후단지 경유 물동량과 항만 물동량 중 항만배후단지경유비율 등이 중요한 고려사항이 되고 있다. 그러나 관련된 선행보고서를 살펴보면, 각 다른 항만물동량 추정치와 경유비율을 적용하는 것을 볼 수 있으며, 대부분의 보고서들은 항만배후단지 개발과 관련하여 낙관적인 관점에서의 물동량추정치와 경유비율을 적용하고 있다. 그러나 본 논문에서는 이러한 기존의 분석들과 달리, 부산신항 배후단지 경제성평가를 비관적인 관점에서 시도해보고자 하였다. 본 연구에서는 부산신항 배후단지 경제성평가를 위해 세 가지의 시나리오를 구성하여 경제성분석을 하였는데 그 결과는 세 가지 시나리오 모두 경제성이 없는 것으로 나타났다. 좀 더 보수적 관점에서 파악하자면 만약 항만배후단지의 활성화에 의한 전략수요가 창출되지 않는다면 현재 계획된 배후부지 면적은 다소 크게 추정되어 있는 것으로 판단된다. 둘째, 미래 수요추정을 기본으로 하여 편익이 산정되고 이를 바탕으로 경제성 평가가 이루어지기 때문에 물동량 예측치는 매우 중요한 요소 중 하나이다. 즉, 보다 정확한 배후단지 경제성평가를 위해, 무엇보다도 신뢰할 수 있는 물동량 예측치가 필요하며, 이를 위해 공신력 있는 국가 기관 및 국책 연구 기관등의 역할이 중요할 것으로 판단된다.
우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.