• Title/Summary/Keyword: Porous thin film

Search Result 200, Processing Time 0.027 seconds

Characterion of Calcium Phosphate Films Grown on Surgicl Ti-6AI-4V By Ion Beam Assisted Deposition

  • Lee, I-S.;Song, J-S.;Choi, J-M;Kim, H-E.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.30-36
    • /
    • 1998
  • The plasma-spray technique is currently the most frequently used method to produce calcium phosphate coatings. Hydroxyapatite(HAp), one form of calcium phosphate, is preferred by its ability to form a direct bond with living bone, resulting in improvements of implant fixation and faster bone healing. Recently, concerns have been raised regarding the viable use and long-term stability of plasma-spray HAp coatings due to its nature of comparatively thick, porous, and poor bonding strength to metal implants. Thin layers (maximum of few microns) of calcium phosphate were formed by an e-beam evaporation with and without ion bombardments. The Ca/P ration of film was controlled by either using the evaporants having the different ration of Ca/P with addition of CaO, or adjusting the ion beam assist current. The Ca/P ration had great effects on the structure formation after heat treatment and the dissolution bahavior. The calcium phosphate films produced by IBAD exhibited high adhesion strength.

  • PDF

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

Synthesis of Microporous Zeolitic Membranes and Application in Alcohol/water Separation (다공성 제올라이트 멤브레인의 합성 및 알코올 /물 분리에의 응용)

  • 김건중;남세종
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • A and 2SM-5 type zeoli tic crystal films were synthesized on porous supports from the reaction mixture of 1.9 ${SiO}_2$1.5 $Na_20-Al_2O_3-40$ $H_20$ and $Si0_2$-0.l3 $Na_2O$-52 $H_20$-O.l2 TPAOH composition, respectively. The zeolite films were characterized by XRD and SEM. The 2SM -5 crystals grown on the porous matrix were very closely bound together. It was so difficult to obtain the perfectly intergrown crystals in the case of A-type zeolite and this crystal was transformed into P-type zeolite membrane with a prolonged reaction time. The densely intergrown A type zeolite crystal membrane could be also synthesized by the hydrothermal treatment at 100$^{\cirt}C$ after pressing the reaction mixture without addition of water. The pervaporation performance of the synthesized porous inorganic membranes was investigated for alcohol and water mixtures. A-type zeolite membrane crystallized as a thin film showed the selective \'Jermeability of water from the mixtures through the molecular sieving activity of micropores.

  • PDF

Preparation of Polyamide Thin Film Composite Memrbanes with Metal Complex Contained Polysulfone Support Layer and Evaluation of Forward Osmosis Performance (금속 착물을 함유한 폴리술폰 지지층을 이용한 폴리아미드계 복합막의 제조 및 정삼투 성능 평가)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Thin film composite (TFC) polyamide membranes were prepared on polysulfone (PSF) supports for forward osmosis (FO) applications. To understand the influence of polarity and porosity of support layer on the formation of polyamide structure and the final FO performance, clathochelate metal complex (MC) contained PSF supports were prepared via the phase inversion process from various PSF casting solutions containing 0.1-0.5 wt% of MC in dimethyl formamide (DMF) solvent (18 wt%). A crosslinked aromatic polyamide layer was then fabricated on top of each support to form a TFC membrane. For the porous PSF supports prepared with relatively low concentration casting solutions (12 wt%), the PET film was removed after phase inversion and crosslinked aromatic polyamide layer was then fabricated. The tested sample from PSF (18 wt%)/MC (0.5 wt%) casting solution presented outstanding FO performance, almost similar water flux (9.99 LMH) with lower reverse salt flux (RSF, 0.77 GMH) compared to commercial HTI FO membrane(10.97 LMH of flux and 2.2 GMH of RSF). By addition of MC in casting solution, the thickness of the active layer in FO membranes was reduced, however, the increased RSF value was obtained.

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho;Noh, Ho-Sung;Jang, Dong Young;Kim, Manjin;Kim, Hyun Joong;Hong, Jongsup;Lee, Jong-Ho;Kim, Byung-Kook;Son, Ji-Won;Shim, Joon Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.320-324
    • /
    • 2015
  • Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.

Fabrication of ${\gamma}-Fe_2O_3$ Thin Film for Chemical Sensor Application (화학센서용 다공성 ${\gamma}-Fe_2O_3$ 박막 제조)

  • Kim, Bum-Jin;Lim, Il-Sung;Jang, Gun-Eik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.171-176
    • /
    • 1999
  • ${\gamma}-Fe_2O_3$ thin films on $Al_2O_3$ substrate were prepared by the oxidation of $Fe_3O_4$ thin films processed by PECVD(Plasma-Enhanced Chemical Vapor Deposition) technique. The phase transformation of ${\gamma}-Fe_2O_3$ thin films was mainly controlled by the substrate temperature and oxidation process of $Fe_3O_4$ phase. $Fe_3O_4$ phase was obtained at the deposition temperature of $200{\sim}300^{\circ}C$. $Fe_3O_4$ phase could be transformed into ${\gamma}-Fe_2O_3$ phase under controlled oxidation at $280{\sim}300^{\circ}C$. $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ obtained by oxidation of $Fe_3O_4$ phase had the same spinel structure and were coexisted. The oxidized ${\gamma}-Fe_2O_3$ thin film on $Al_2O_3$ substrate showed a porous island structure.

  • PDF

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.