Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.281

Preparation of Polyamide Thin Film Composite Memrbanes with Metal Complex Contained Polysulfone Support Layer and Evaluation of Forward Osmosis Performance  

Kim, Nowon (Department of Environmental Engineering, Dong-Eui University)
Jung, Boram (Department of Environmental Engineering, Dong-Eui University)
Publication Information
Membrane Journal / v.26, no.4, 2016 , pp. 281-290 More about this Journal
Abstract
Thin film composite (TFC) polyamide membranes were prepared on polysulfone (PSF) supports for forward osmosis (FO) applications. To understand the influence of polarity and porosity of support layer on the formation of polyamide structure and the final FO performance, clathochelate metal complex (MC) contained PSF supports were prepared via the phase inversion process from various PSF casting solutions containing 0.1-0.5 wt% of MC in dimethyl formamide (DMF) solvent (18 wt%). A crosslinked aromatic polyamide layer was then fabricated on top of each support to form a TFC membrane. For the porous PSF supports prepared with relatively low concentration casting solutions (12 wt%), the PET film was removed after phase inversion and crosslinked aromatic polyamide layer was then fabricated. The tested sample from PSF (18 wt%)/MC (0.5 wt%) casting solution presented outstanding FO performance, almost similar water flux (9.99 LMH) with lower reverse salt flux (RSF, 0.77 GMH) compared to commercial HTI FO membrane(10.97 LMH of flux and 2.2 GMH of RSF). By addition of MC in casting solution, the thickness of the active layer in FO membranes was reduced, however, the increased RSF value was obtained.
Keywords
forward osmosis membrane; phase inversion; thin film composite polyamide membrane; clathochelate metal complex;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 E. Butler, A. Silva, K. Horton, Z. Rom, M. Chwatko, A. Havasov, and J. R. McCutcheon, "Point of use water treatment with forward osmosis for emergency relief", Desalination, 312, 23 (2013).   DOI
2 A. Achilli, T. Y. Cath, and A. E. Childress, "Power generation with pressure retarded osmosis: an experimental and theoretical investigation", J. Membr. Sci., 343, 42 (2009).   DOI
3 K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141 (1981).   DOI
4 A. Achilli, T. Cath, and A. childress, "Power generation with retarded osmosis: An experimental and theoretical investigation", J. Membr. Sci., 343, 42 (2009).   DOI
5 T. Cath, A. Childress, and M. Elimelech, "Forward osmosis : principles, application, and recent developments", J. Membr. Sci., 281, 70 (2006).   DOI
6 E. Kravath and J. A. Davis, "Desalination of seawater by direct osmosis", Desalination, 16, 151 (1975).   DOI
7 O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976).   DOI
8 S. Hong, S. Lee, J. H. Kim, J. H. Kim, and Y. Ju, "Evolution of RO Process for Green Future", KIC News, 14, 9 (2011).
9 Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010).   DOI
10 T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006).   DOI
11 D. Stillman, L. Krupp, and Y.-H. La, "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 468, 308 (2014).   DOI
12 N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011).   DOI
13 D. Xiao, C. Y. Tang, J. Zhang, W. C. L. Lay, R. Wang, and A. G. Fane, "Modeling salt accumulation in osmotic membrane bioreactor simplications for FO membrane selection and system operation", J. Membr. Sci., 366, 314 (2011).   DOI
14 A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes", Desalination, 239, 10 (2009).   DOI
15 K. Lutchmiah, E. R. Cornelissen, D. J. H. Harmsen, J. W. Post, K. Roest, K. Lampi, H. Ramaekers, and L. C. Rietveld, "Water recovery from sewage using forward osmosis", Water Sci. Technol., 64, 1443 (2011).   DOI
16 N. Kim and B. Jung, Preparation of forward osmosis membranes with low internal concentration polarization,. Membr. J., 24, 453 (2014).   DOI
17 B. Jung, Y. Son, Y. T. Lee, and N. Kim, Preparation of organic-inorganic hybrid PES membranes using Fe(II) clathrochelate, Membr. J., 23, 80 (2013).
18 J. Wei, C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, "Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes", J. Membr. Sci., 372, 292 (2011).   DOI
19 S. H. Ahn, I. C. Kim, D. H. Song, J. Jegal, Y. Kwon, and H. W. Rhee, "Pore structure and separation properties of thin film composite forward osmosis membrane with different support structures", Membr. J., 23, 251 (2013).
20 H. Ahn, J. Kim, and Y. Kwon, "Preparation of cellulose acetate membrane and its evaluation as a forward osmosis membrane", Membr. J., 24, 136 (2014).   DOI
21 R. Babu, N. K. Rastogi, and K. S. M. S. Raghavarao, "Effect of process parameters on transmembrane flux during direct osmosis", J. Membr. Sci., 280, 185 (2006).   DOI
22 B. Jung, J. H. Kim, B. S. Kim, Y. I. Park, D. H. Song, and I. C. Kim, "Effect of support membrane property on performance of forward osmosis membrane", Membr. J., 20, 235 (2010).