• 제목/요약/키워드: Porous surface

검색결과 1,500건 처리시간 0.033초

연꽃잎을 모사한 초소수성 표면 제작 (Fabrication of the Superhydrophobic Surface Inspired from Lotus-Effect)

  • 정대환;임현의;노정현;김완두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.409-414
    • /
    • 2007
  • Wettability of solid surfaces with liquids is governed by the chemical properties and the microstructure of the surfaces. We report on the preparation of liquid-repellent surfaces using surface-attached monolayers of perfluorinated polymer molecules on porous silica substrates. A covalent attachment of the polymer molecules to the substrate is achieved by generation of the polymer chains through starting a surface-initiated radical-chain polymerization of a fluorinated monomer. To this, self-assembled monolayers of azo initiators are attached to silica substrates, which are used to kick off the polymerization reaction in situ. The growth of the fluorinated polymer films and the characterization of the obtained surfaces by surface plasmon spectroscopy, XPS, and contact angle measurements is described. It is shown that perfluorinated polymer films can be grown with controlled thicknesses on flat and even on porous silica surfaces, essentially without changing the surface roughness. The combination of the low surface energy coating and the surface porosity allows generation of materials which are both water and oil repellent.

  • PDF

Potential Dependence of Electrochemical Etching Reaction of Si(111) Surface in a Fluoride Solution Studied by Electrochemical and Scanning Tunneling Microscopic Techniques

  • Bae, Sang-Eun;Youn, Young-Sang;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.330-335
    • /
    • 2020
  • Silicon surface nanostructures, which can be easily prepared by electrochemical etching, have attracted considerable attention because of its useful physical properties that facilitate application in diverse fields. In this work, electrochemical and electrochemical-scanning tunneling microscopic (EC-STM) techniques were employed to study the evolution of surface morphology during the electrochemical etching of Si(111)-H in a fluoride solution. The results exhibited that silicon oxide of the Si(111) surface was entirely stripped and then the surface became hydrogen terminated, atomically flat, and anisotropic in the fluoride solution during chemical etching. At the potential more negative than the flat band one, the surface had a tendency to be eroded very slowly, whereas the steps of the terrace were not only etched quickly but the triangular pits also deepened on anodic potentials. These results provided information on the conditions required for the preparation of porous nanostructures on the Si(111) surface, which may be applicable for sensor (or device) preparation (Nanotechnology and Functional Materials for Engineers, Elsevier 2017, pp. 67-91).

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS)

  • 우진오;박봉욱;변준호;김승언;김규천;박봉수;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.401-407
    • /
    • 2016
  • In this work, effect of zincate treatment of AZ91 Mg alloy on the following electrodeposition of copper was examined in a non-cyanide bath containing pyrophosphate ions in view of surface morphology and adhesion of the electrodeposited copper layer. Without zincate treatment, the electrodeposited copper layer showed very porous structure and poor adhesion. On the other hand, the copper layer electrodeposited on the zincate-treated surface showed dense structure and good adhesion. The dissolution rate of AZ91 Mg alloy after the zincate treatment appeared to decrease about 40 times in the copper pyrophosphate bath, as compared to that of the surface without zincate treatment. The porous morphology and poor adhesion of a copper layer on the AZ91 Mg alloy surface without zincate treatment were attributed to small number of nucleation sites of copper because of rapid dissolution of the magnesium substrate in the pyrophosphate bath. Based on the experimental results, it is concluded that the zincate treatment to form a conducting and protecting layer on the AZ91 Mg alloy surface is essential for successful electrodeposition of a copper layer on AZ91 Mg alloy with good adhesion and dense structure in the copper pyrophosphate bath.

사다리꼴형상 투과성 수중방파제에 의한 정현파의 Bragg 반사 (Bragg Reflection of Sinusoidal Waves due to Trapezoidal Submerged Porous Breakwaters)

  • 전찬후;조용식;이종인
    • 한국수자원학회논문집
    • /
    • 제36권5호
    • /
    • pp.741-749
    • /
    • 2003
  • 본 연구에서는 사다리꼴형상 투과성 수중방파제에 의한 정현파의 Bragg반사에 대해 수리모형실험과 수치모형실험을 수행하였으며, 두 실험결과를 비교하였다. 수치해석에 적용된 모형에서는 공간 평균된 Wavier-Stokes 방정식을 투과체 내에서의 지배방정식으로 사용하였고, 자유수면변위를 추적하기 위해 VOF기법을 적용하였다. 수리실험결과와 수치해석결과는 비교적 잘 일치하였으며, 투과성 수중방파제에 의한 반사계수는 불투과성에 비해 낮게 나타나고, 방파제의 배열이 증가함에 따라 반사계수는 증가함을 보였다.

굵은골재 최대치수 40 mm 투수 콘크리트의 물리적 특성과 질소산화물 제거에 관한 연구 (An Experimental Study on NOx Degradation Efficiency and Physical Characteristics of Maximum Size 40 mm Porous Concrete)

  • 홍종현;김문훈;류성필;정광옥
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.431-438
    • /
    • 2006
  • The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relation-ships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and $y=0.42e^{0.28x}$. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.

양극산화법과 UV-LED를 이용한 다공성 3C-SiC 박막 형성 (Formation of porous 3C-SiC thin film by anodization with UV-LED)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.307-310
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS(Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 $\sim$ 90 nm was achieved at 7.1 mA/cm$^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 cm$^{-1}$. PL shows the band gap enegry of thin film(2.5 eV) and porous 3C-SiC(2.7 eV).