• Title/Summary/Keyword: Porous structure

Search Result 1,190, Processing Time 0.03 seconds

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

Fabrication of Porous Ceramics and Multi-layered Ceramics Containing Porous Layers; I. Pore Structure (다공성 세라믹스와 다공질층을 포함하는 적층체의 제조에 관한 연구;I. 기공구조)

  • 이해원;윤복규;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1044-1052
    • /
    • 1994
  • Tape casting technique was successfully applied to produce porous ceramics and multi-layered ceramics containing porous layers, where spherical hollow polymer particles were introduced as pore precursors. In the presence of extreme differences in density and size between Al2O3 and pore precursor particles, hindered settling was effective in preventing segregation of component particles and packing behavior of mixed powders was improved through bimodal packing. There were two transitions in packing behavior of mixed powders. The first transition took place at 40~50 vol% pore precursor addition, where majority of pores changed from close to open pore state. The other transition occured at 60~70 vol% pore precursor addition, where pore precursor particles formed a continuous network structure.

  • PDF

Optical Characterization of DBR Porous Silicon by Changing of Applied Current Density (전류세기의 변화에 따른 DBR 다공성 실리콘의 광학적 특성)

  • Choi, Tae-Eun;Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.82-85
    • /
    • 2009
  • Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by an electrochemical etching a bragg structure into a silicon wafer through electrode current in aqueous ethanolic HF solution. DBR PSi exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer using square current waveform. The multilayered photonic crystals of DBR PSi exhibited the reflection of a specific wavelength with high reflectivity in the optical reflectivity spectrum. In this work, we have developed a method to create refractive index in Si substrate through intensity of an electric current. The electrochemical process allows for precise control of the structural properties of DBR PSi such as thickness of the porous layer, porosity, and average pore diameter. The number of reflection peak of DBR PSi and its pore size increased as the intensity of electric current increased. This might be a demonstration for the fabrication of specific reflectors or filters.

  • PDF

Formation and Control of Dual Porous Structures of Metal by an Electrochemical Method (전기화학적 방법을 통한 금속 이중기공구조 형성 및 제어)

  • Ha, Seong-Hyeok;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than $1{\mu}m$ diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.

C-V Characteristics of Porous Silicon Alcohol Sensors with the Semi-transparent Electrode (반투명 전극으로 된 다공질 실리콘 알코올 가스 센서의 C-V 특성)

  • 김성진;이상훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1085-1088
    • /
    • 2003
  • In this work, we fabricated a gas-sensing device based on porous silicon(PS), and its I-V and C-V properties were investigated for sensing alcohol vapor. The structure of the sensor consists of thin Au/Oxidized porous silicon/porous silicon/Silicon/Al, where the silicon substrate is etched anisotropically to be prepared into a membrane shape. As the result, I-V curves showed typical tunneling property, and C-V curves were shaped like those of a MIS (metal-insulator- semiconductor) capacitor, where the capacitance in accumulation was increased with alcohol vapor concentration.

  • PDF

Porous Structures with Negative Poisson's Ratio using Pattern Transformation Triggered by Deformation (변형에 의한 패턴변화를 활용한 음의 포아송비 다공성 구조)

  • Oh, Myung-Hoon;Choi, Myung-Jin;Byun, Tauk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.275-282
    • /
    • 2017
  • In this paper, using a pattern transformation triggered by deformation, we propose a porous structure that exhibits the characteristic of negative Poisson's ratio in both tension and compression. Due to the lack of torque for rotational motion of ligaments, the existing porous structure of circular holes shows positive Poisson's ratio under tension loading. Also, the porous structure of elliptic holes has a drawback of low durability due to stress concentration. Thus, we design curved ligaments to increase the rotational torque under tension and to alleviate the stress concentration such that strain energy is uniformly distributed in the whole structure. The developed structure possesses better stiffness and durability than the existing structures. It also exhibits the negative Poisson ratio in both compression and tension of 10% nominal strain. Through nonlinear finite element analysis, the performance of developed structure is compared with the existing structure of elliptic holes. The developed structure turns out to be significantly improved in terms of stiffness and durability.

Wind loads for high-solidity open-frame structures

  • Amoroso, Samuel D.;Levitan, Marc L.
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Open frame structures, such as those commonly found in industrial process facilities, are often densely occupied with process related equipment. This paper presents a method for estimating wind loads for high-solidity open frame structures that differs from current approaches, which accumulate wind load contributions from various individual structure components. The method considers the structure as a porous block of arbitrary plan dimension that is subject to wind from any direction. The proposed method compares favorably with wind tunnel test results for similar structures. The possibility of defining an upper bound force coefficient is also discussed.

Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures (DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성)

  • Choi, Tae-Eun;Yang, Jinseok;Um, Sungyong;Jin, Sunghoon;Cho, Bomin;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

Fabrication and Characterization of Optically Encoded Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{{+}{+}}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Optical characteristics of porous smart particles were measured by FT-IR spectroscopy. The surface morphology of porous smart particles was determined by FE-SEM.

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF