• 제목/요약/키워드: Porous silicon carbide

검색결과 49건 처리시간 0.023초

고분자 복제 템플릿 방법을 이용하여 제조된 다공성 탄화규소의 미세구조 특성 (Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method)

  • 이윤주;김수룡;김영희;신동근;원지연;권우택
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.539-543
    • /
    • 2014
  • Foam type porous silicon carbide ceramics were fabricated by a polymer replica method using polyurethane foam, carbon black, phenol resin, and silicon powder as raw materials. The influence of the C/Si mole ratio of the ceramic slurry and heat treatment temperature on the porous silicon carbide microstructure was investigated. To characterize the microstructure of porous silicon carbide ceramics, BET, bulk density, X-ray Powder Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were employed. The results revealed that the surface area of the porous silicon carbide ceramics decreases with increased heat treatment temperature and carbon content at the $2^{nd}$ heat treatment stage. The addition of carbon to the ceramic slurry, which was composed of phenol resin and silicon powder, enhanced the direct carbonization reaction of silicon. This is ascribed to a consequent decrease of the wetting angles of carbon to silicon with increasing heat treatment temperature.

Photoluminescence of Porous Silicon Carbide in Solvents

  • Lee, Ki-Hwan;Lee, Tae-Ho;Yoon, Seok-Won;Lee, Seung-Koo;Jeon, Hae-Kwon;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.171-174
    • /
    • 2005
  • The relationship between porous surfaces and photoluminescence (PL) behavior of porous silicon carbide (PSC) in various solvents has been studied. The porous surfaces of p-type silicon carbide can be fabricated by electrochemical anodization from the 6H, 15R, 4H-${\alpha}$-SiC substrates in dark-current mode (DCM) condition. We have been investigated the dependence of the PL spectra of PSC under the medium having the different dielectric constants. It has been found that PL depends sensitively on the environment surrounding the surface. The extent of chemically stability on the surface of PSC due to the various solvents was confirmed by reflectance Fourier transform infrared (FTIR) spectroscopy. Detailed IR experiments on the PSC samples were carried out before and after various solvents immersion. These results will be offered important information on the origin of PL in porous structure.

  • PDF

산화물 결합 탄화규소 다공질 소재에 관한 연구 (Studies on the Oxide Bonded Silicon Carbide Porous Materials)

  • 이재춘;국일현
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.179-186
    • /
    • 1990
  • Silicon carbide porous materials used for hot gas filters were prepared using oxide binder. Chamotte, frit and H3PO4 were starting materials to synthesize the oxide binder for high temperature-use. Room temperature bending strength of the silicon carbide porous body was increased with increasing firing temprature or with the amount of the content of frit in the oxide binder. However, in the oxidebinder fired above132$0^{\circ}C$, cristobalite form of AlPO4 phase which undergoes rapid inversion became more prominent with increasing firing time. the average pore size of the silicon carbide filter materials was found to be about one third of the average grain size of the silicon carbide powder used in this study.

  • PDF

다공성실리콘 위의 탄화규소 박막의 증착 및 발광특성 (Deposition and Photoluminescence Characteristics of Silicon Carbide Thin Films on Porous Silicon)

  • 전희준;최두진;장수경;심은덕
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.486-492
    • /
    • 1998
  • Silicon carbide (SiC) thin films were deposited on the porous silicon substrates by chemical vapour de-position(CVD) using MTS as a source material. The deposited films were ${\beta}$-SiC with poor crystallity con-firmed by XRD measurement. It was considered that the films showed the mixed characteistics of cry-stalline and amorphous SiC where amorphous SiC where amorphous SiC played a role of buffer layer in interface between as-dep films and Si substrate. The buffer layer reduced lattice mismatch to some extent the generally occurs when SiC films are deposited on Si. The low temperature (10K) PL (phtoluminescence) studies showed two broad bands with peaks at 600 and 720 for the films deposited at 1100$^{\circ}C$ The maximum PL peak of the crystalline SiC was observed at 600 nm and the amrophous SiC of 720 nm was also confirmed. PL peak due the amorphous SiC was smaller than that of the crystalline SiC, PL of porous Si might be disapperared due to densification during heat treatment.

  • PDF

실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성 (Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture)

  • 김종찬;이은주;김득중
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

OPTICAL CHARACTERISTICS OF POROUS SILICON CARBIDE BY PHOTOLUMINESCENCE SPECTROSCOPY

  • Lee, Ki-Hwan;Du, Ying-Lei;Lee, Tae-Ho
    • Journal of Photoscience
    • /
    • 제6권4호
    • /
    • pp.183-186
    • /
    • 1999
  • We have been prepared the porous silicon carbide (PSC) by electrochemical etching of silicon carbide single crystals. Samples of PSC have been studied by the methods of scanning electron microscope (SEM) and photoluminescence (PL). Two PL bands attributed to the blue and green light emission were observed in this study. According to the anodization conditions, the main source of emission in the oxidized layers of PSC lies in the different surface defect centers which consist of different geometrical structures due to the polytypes. It means that origin of these PL bands may be existed in different size pores simultaneously. The present results indicate that the high energy band comes from the top porous layers while the low energy band comes from the lower porous layers.

  • PDF

탄소 원료가 다공질 Self-Bonded SiC (SBSC) 세라믹스의 기공율과 곡강도에 미치는 영향 (Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics)

  • 임광영;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.430-437
    • /
    • 2008
  • Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 to $1850^{\circ}C$ using SiC, silicon (Si), and three different carbon (C) sources, including carbon black, phenol resin, and xylene. The effects of the Si:C ratio and carbon source on porosity and strength were investigated as a function of sintering temperature. Porous SBSC ceramics fabricated from phenol resin showed higher porosity than the others. In contrast, porous SBSC ceramics fabricated from carbon black showed better strength than the others. Regardless of the carbon source, the porosity increased with decreasing the Si:C ratio whereas the strength increased with increasing the Si:C ratio.

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

탄소열환원 공정을 사용한 다공질 탄화규소 세라믹스의 저온 제조공정 (Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction)

  • 엄정혜;장두희;김영욱;송인혁;김해두
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.552-557
    • /
    • 2006
  • A low temperature processing route for fabricating porous SiC ceramics by carbothermal reduction has been demonstrated. Effects of expandable microsphere content, sintering temperature, filler content, and carbon source on microstructure, porosity, compressive strength, cell size, and cell density were investigated in the processing of porous silicon carbide ceramics using expandable microspheres as a pore former. A higher microsphere content led to a higher porosity and a higher cell density. A higher sintering temperature resulted in a decreased porosity because of an enhanced densification. The addition of inert filler increased the porosity, but decreased the cell density. The compressive strength of the porous ceramics decreased with increasing the porosity. Typical compressive strength of porous SiC ceramics with ${\sim}70%$ porosity was ${\sim}13 MPa$.