• Title/Summary/Keyword: Porous particle

Search Result 375, Processing Time 0.026 seconds

Preparation of Porous Carbon by Chlorination of SiC (SiC의 염소화에 의한 다공성 탄소 입자 제조)

  • Park, Hoey Kyung;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

A New Groutability Criterion of Cement-based Grout with Consideration of Viscosity and Filtration Phenomenon (점도변화와 흡착현상을 고려한 시멘트계 그라우트재의 새로운 침투 기준)

  • Kim, Jong-Sun;Lee, In-Mo;Lee, Mun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.154-163
    • /
    • 2009
  • The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement-based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed-form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement-based grout in the soil matrix. The closed-form solution relevant to a particular spherical flow was modified by a step-wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot-scale chamber injection tests was performed to verify that the developed step-wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step-wise numerical calculation. Based on the filtration phenomenon, a new groutability criterion of cement-based grout in a porous medium was proposed, which might facilitate a new insight in the design of the grouting process.

  • PDF

Histologic Study on Healing after Implantation of several Bone Substitutes in Rat Calvarial Defects (백서 두개골 결손부에 수종의 합성골 이식후 치유양상)

  • Lee, Eun-Ju;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.87-102
    • /
    • 1998
  • The purpose of this stuffy was to assess and compare the osseous responses to implanted particles of porous synthetic HA (Interpore $200^{(R)}$, Interpore International, U.S.A.), resorbable natural bovine derived HA (Bio-$oss^{(R)}$, Gestlich Pharma, Switzerland) and calcium carbonate(Biocoral $450^{(R)}$, Inoteb, France) in bone defects. Four calvarial defects of 2.5mm diameter were created in earth of 16 Sprague-Dawley rats. The experimental materials were subsequently implanted hi three defects, leaving the fourth defect for control purpose. Four animals were earth sacrificed at 3 days, 1week, 2weeks and 4 weeks after surgery. The tissue response was evaluated under light microscope. Overall, histologic responses showed that all the particles were well tolerated and caused no aberrent tissue responses. There were difference in the amount of newly formed bone at the experimental sites and control site. There was more new bone formation associated with calcium carbonate site. In addition, the calcium carbonate site displayed multinucleated giant cells surrounding calcium carbonate particles after the 1st week, and osteoid tissue within the particle after the 2nd week. After 4 weeks, calcium carbonate particles were resorbed and replaced with new bone. The healing of the natural bovine derived HA site was similar to that of porous synthetic HA, except that new bone growth between the two particles have progressed more in the former site after the 2nd week. In the natural bovine derived HA site, the particle was surrounded by newly formed bone after the 4th week. After 4 weeks, the control site showed more mature bone than other sites. In conclusion, the grafted site were better in new bone formation than non-grafted sites. In particular the calcium Carbonate site showed the ability of osteoinduction and natural bovine denver HA showed osteoconduction in rat calvarial defects. This suggest that calcium carbonate and natural bovine derived HA could enhance the regenerative potential in periodontal defects.

  • PDF

Characterization of artificial aggregates of coal bottom ash-red clay system (석탄바닥재-적점토계 인공골재의 특성평가)

  • Kim, Kangduk;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.305-311
    • /
    • 2012
  • In order to recycle the coal bottom ashes (denoted as BA) produced from a thermal power plant, the artificial aggregates (denoted as AAs) containing BA and red clay were manufactured, and the physical properties of AAs were studied as a function of particle size of BA and batch compositions. As-received BA had 38 wt% coarse particles of above 2 mm and many unburned carbon mass and porous slag particles were co-existed. So the two particle sizes of BA, the fine (< 100 ${\mu}m$) and coarse (< 2 mm), were prepared by milling and screening process. The AAs containing fine BA sintered at $1100{\sim}1200^{\circ}C$ had the higher bulk density and lower water absorption compared to the specimen made of coarse BA. The inside core of AAs manufactured by using coarse BA showed nonuniform and porous microstructure, while the AAs made of fine BA had a uniform and dense microstructure. In this research, the AAs containing BA and red clay with various bulk density (1.2~1.7) and water absorption (13~21 %) could be manufactured by controlling the particle size of BA and batch compositions, so the AAs of various physical properties could be applied to the wide fields such as construction/building materials in near future.

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.

Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters (단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석)

  • Jung, Seung-Chai;Park, Jong-Sun;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density

  • Cho, Min-Young;Park, Sun-Min;Kim, Kwang-Bum;Lee, Jae-Won;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2012
  • Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.