Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.3.135

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density  

Cho, Min-Young (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology)
Park, Sun-Min (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Kwang-Bum (Department of Materials Science & Engineering, Yonsei University)
Lee, Jae-Won (Department of Energy Engineering, Dankook University)
Roh, Kwang Chul (Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.3, 2012 , pp. 135-142 More about this Journal
Abstract
Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.
Keywords
Lithium-ion battery; Cathode; $LiFePO_4$; Microspheres; Porous structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Tarascon and M. Armand, Nat., 414, 359 (2001).   DOI   ScienceOn
2 K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 15, 783 (1980).   DOI   ScienceOn
3 D. Guyomard and J. M. Tarascon, Adv. Mater., 6, 408 (1994).   DOI   ScienceOn
4 A. C. Dilon, Chem. Rev., 110, 6856 (2010).   DOI   ScienceOn
5 A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).   DOI   ScienceOn
6 S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nat. Mater., 1, 123 (2002).   DOI   ScienceOn
7 F. Zhou, M. Cococcioni, K. Kang and G. Ceder, Electrochem. Commun., 6, 1144 (2004).   DOI   ScienceOn
8 H. Huang, S. -C. Yin and L. F. Nazar, Electrochem. Solid State Lett., 4, A170 (2001).   DOI   ScienceOn
9 R. Malik, D. Burch, M. Bazant and G. Ceder, Nano Lett., 10, 4123 (2010).   DOI   ScienceOn
10 A. S. Andersson, B. Kalska, L. Haggström and J. O. Thomas, Solid State Ionics, 130, 41 (2000).   DOI   ScienceOn
11 P. P. Prosini, M. Lisi, D. Zane and M. Pasquali, Solid State Ionics, 148, 45 (2002).   DOI   ScienceOn
12 P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski and M. Pasquali, Electrochim. Acta, 48, 4205 (2003).   DOI   ScienceOn
13 C. Sun, S. Rajasekhara, J. B. Goodenough and F. Zhou, J. Am. Chem. Soc, 133, 2132 (2011).   DOI   ScienceOn
14 S. W. Oh, S.-T. Myung, H. J. Bang, C. S. Yoon, K. Amine and Y.-K. Sun, Electrochem. Solid State Lett., 12, A170 (2009).
15 S. W. Oh, S.-T. Myung, S.-M. Oh, K. H. Oh, K. Amine, B. Scrosati and Y.-K. Sun, Adv. Mater., 22, 4842 (2010).   DOI   ScienceOn
16 J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, J. Phys. Chem. C, 114, 3477 (2010).   DOI   ScienceOn
17 X. Lou and Y. Zhang, J. Mater. Chem., 21, 4156 (2011).   DOI   ScienceOn
18 H. Shu, X. Wang, Q. Wu, B. Ju, L. Liu, X. Yang, Y. Wang, Y. Bai and S. Yang, J. Electrochem. Soc., 158, A1448 (2011).   DOI   ScienceOn
19 C. Zhang, X. He, Q. Kong, H. Li, H. Hu, H. Wang, L. Gu, L. Wang, G. Cui and L. Chen, CrystEngComm., 14, 4344 (2012).   DOI   ScienceOn
20 F. Yu, J. Zhang, Y. Yang and G. Song, J. Power Sources, 195, 6873 (2010).   DOI   ScienceOn