• Title/Summary/Keyword: Porous particle

Search Result 373, Processing Time 0.025 seconds

Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics (프릿을 이용한 다공질 SiC 세라믹스의 저온 제조 공정 및 물성)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.488-492
    • /
    • 2009
  • Porous frit-bonded SiC ceramics were successfully prepared at a temperature as low as $800^{\circ}C$ from SiC, frit, and microbeads (glass or polymer). The effects of SiC starting particle size and microbead addition on microstructure, porosity, and flexural strength were investigated. The addition of hollow glass microbead improved the strength of frit-bonded SiC ceramics without the loss of porosity by acting additional binder phase between SiC grains. The 65 ${\mu}m$-sized SiC resulted in lower porosity and higher strength than 50 ${\mu}m$-sized SiC because of higher packing density. Typical flexural strengths of frit-bonded SiC were 23 MPa at 46% porosity and 19 MPa at 49% porosity.

3D Micromorphology Producing within Poly(lactic acid) Skeleton Using Room-Temperature Ionic Liquids: From Particulate, Fibrous or Porous Scaffolds to Beads

  • Shin, Ueon-Sang;Kim, Jong-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2295-2298
    • /
    • 2012
  • We describe herein a three-dimensionally diverse micropatterning of poly(lactic acid), as a biopolymer, using 1-butyl-3-methylimidazolium-based room-temperature ionic liquids (bmim-based RTILs), [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$, Cl). Utilizing the hydrophobic bmim-based RTILs, [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$) and a phase separation technique, we were able to produce white and opaque membranes with a three-dimensional structure closely packed with particles ($10-50{\mu}m$ in diameter). The particlulate structure, made by the assistance of [bmim]$NTf_2$ and DCM, interestingly transformed to a fibrous structure by using a cosolvent, e.g., DCM/$CF_3CH_2OH$. When we used an increased amount of [bmim]$NTf_2$, the particles were effectively detached and macrosized ($100-500{\mu}m$ in diameter) and the oval-shaped beads were obtained in a powder form. By varying the counter-anion type of the imidazolium-based RTIL, for example from $NTf_2^-$ to $Cl^-$, the particulate 3D-morphology was once more transformed to a porous structure. These reserch results could be potentially useful, as a method to fabricate particulate scaffolds, fibrous or porous scaffolds, and beads as a biopolymer device in diverse fields including drug delivery, tissue regeneration, and biomedical engineering.

Surface Properties of the High Porous Carbon Aerogels (고다공성 카본 에어로젤(C-Aerogel) 표면 특성)

  • Kim, Ji-Hye;Lee, Chang-Rae;Jeong, Young-Soo;Kim, Yang-Do;Kim, In-Bae
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

Collection characteristics of wet-type rotating porous disk system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 습식 회전형 다공성 디스크 시스템의 집진특성)

  • Yoa, Seok-Jun;Jang, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.318-325
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type rotating porous disk system experimentally. The experiment is carried out to analyze the pressure drop and collection efficiency for the present system with the experimental parameters such as system inlet velocity, stage number, tube diameter, inlet concentration, etc. In results, for the present system, at 5 stage and ${\upsilon}_{in}=1.8m/s$, the pressure drop becomes significantly lower as $64mmH_2O$ in comparison with that of the conventional wet type scrubber (Venturi scrubber, over $250mmH_2O$). The collection efficiencies increase with higher inlet velocity showing 92, 95.7, 98.4%, while $SO_2$ removal efficiencies decrease with increment of inlet velocity as 80, 65, 50% at ${\upsilon}_{in}=1.08$, 1.44, 1.8 m/s and tube diameter $D_t=10mm$, respectively. The present system is to be considered as an effective compact system for a simultaneous removal of particle/gas phase pollutants from marine diesel engines.

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

A Study on the Characteristics of Pressure Drop and Regeneration of a Porous Seramic Pellet Filter for Diesel Particulate Trap (다공성 세라믹 펠렛을 포집재로 사용하느 매연여과장치의 배압 및 재생 특성에 관한 연구)

  • Kim, Hong-Suk;Cho, Guy-Back;Kim, Jin-Hyun;Jeong, Young-Il;Jeong, In-Su;Park, Jai-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Diesel particulate trap is a core technology for the reduction of PM from diesel vehicles This study presents the features and the characteristics of DPF system when using pellet type filters. In comparison with wall-flow filter, the pellet filter has the advantages of cracking free during regeneration and shape flexibility. Experiments are conducted in a test bench simulated as diesel engine exhaust condition. Pressure drop and particle loading rate was compared by using two pellet filters having the porosity of 70% and 0%. Also its regeneration was tested.

  • PDF

Preparation of Porous Layered Carbon Using Magadiite Template (Magadiite 주형을 이용한 층상 카본의 합성)

  • Choe, Seok-Hyon;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.408-412
    • /
    • 2005
  • Porous layered carbon was prepared by interlayer pyrolysis of pyrolysis fuel oil (PFO) using magadiite template and successive dissolution of template. Particle morphology was plate type with d-spacing of approximately 0.7 nm and it had constant interlayer space. Specific surface area was $147{\sim}385m^2/g$ depending upon template type, mixing ratios and pyrolysis time.

STUDIES FOR THE CHARACTER OF THE POROUS SILICA CONTAINING THE NANO-SIZED TIO$_2$, PARTICLE IN THE PORE.

  • Jhun, Hyun-pyo;Kong, Woo-sik;Lee, Kyoung-chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.59-64
    • /
    • 1998
  • In order to lower porosity of the porous silica, titanium alkoxide solution was filled in the pore of silica in the heating-vacuum condition. The specific surface area of modified samples was decreased effectively from 900 m$^2$/g to 100 m$^2$/g. (The aggregation phenomena in modified samples were improved fairly.) Samples were heated at 600 , and then the titanium alkoxide in the pore was decomposed completely to titanium oxide from TGA-DTA measurement. From SEM result, it was evident that titanium oxide did not coat the surface of the silica. The modified samples were analyzed using SEM, DTA-TGA, BET, and UV-visible spectrometer.

  • PDF

Fabrication of Porous Materials having an Anisotropic Thermal Conductivity through the Alignment of Plate-shaped Pores (배향된 판상 기공구조를 통해 열전도도 이방성을 갖는 다공질 재료의 제조)

  • Yun, Jung-Yeol;Song, In-Hyeok;Kim, Hae-Du
    • 연구논문집
    • /
    • s.33
    • /
    • pp.147-155
    • /
    • 2003
  • In order to fabricate porous materials having an anisotropic thermal conductivity by aligning plate-shaped pores structure, alumina powder (AM-21, mean particle size $4\mum$) and flake crystalline graphite was used. The aligned pore structure was realized using multi-pressing process. Degree of pore orientation increased with the number of pressing and thermal conductivity, parallel to the pressing direction, decreased with the number of pressing. Thermal conductivity decreased significantly to the addition of 30vol% crystalline graphite, however, in the case of 60vol%, thermal conductivity did not decrease significantly due to the breakage of crystalline graphite. An anisotropy of the thermal conductivity increased with the content of crystalline graphite up to 30vol%. Graded pore structure was fabricated by controlling the content and size of crystalline graphite, which provides, possibly, the enhancement in mechanical strength and thermal insulation properties of the insulating bricks.

  • PDF