DOI QR코드

DOI QR Code

3D Micromorphology Producing within Poly(lactic acid) Skeleton Using Room-Temperature Ionic Liquids: From Particulate, Fibrous or Porous Scaffolds to Beads

  • Shin, Ueon-Sang (Department of Nanobiomedical Science, Dankook University) ;
  • Kim, Jong-Gyu (Department of Nanobiomedical Science, Dankook University)
  • Received : 2012.03.06
  • Accepted : 2012.04.11
  • Published : 2012.07.20

Abstract

We describe herein a three-dimensionally diverse micropatterning of poly(lactic acid), as a biopolymer, using 1-butyl-3-methylimidazolium-based room-temperature ionic liquids (bmim-based RTILs), [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$, Cl). Utilizing the hydrophobic bmim-based RTILs, [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$) and a phase separation technique, we were able to produce white and opaque membranes with a three-dimensional structure closely packed with particles ($10-50{\mu}m$ in diameter). The particlulate structure, made by the assistance of [bmim]$NTf_2$ and DCM, interestingly transformed to a fibrous structure by using a cosolvent, e.g., DCM/$CF_3CH_2OH$. When we used an increased amount of [bmim]$NTf_2$, the particles were effectively detached and macrosized ($100-500{\mu}m$ in diameter) and the oval-shaped beads were obtained in a powder form. By varying the counter-anion type of the imidazolium-based RTIL, for example from $NTf_2^-$ to $Cl^-$, the particulate 3D-morphology was once more transformed to a porous structure. These reserch results could be potentially useful, as a method to fabricate particulate scaffolds, fibrous or porous scaffolds, and beads as a biopolymer device in diverse fields including drug delivery, tissue regeneration, and biomedical engineering.

Keywords

References

  1. Kesting, R. E. Synthetic Polymeric Membranes; Wiley: New York, 1985.
  2. Curtis, A.; Wilkinson, C. Biomaterials 1997, 18, 1573. https://doi.org/10.1016/S0142-9612(97)00144-0
  3. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Biomaterials 1999, 20, 2363. https://doi.org/10.1016/S0142-9612(99)00165-9
  4. Wijmans, J. G.; Rutten, H. J. J.; Smolders, C. A. J. Polym. Sci. Polym. Phys. 1985, 23, 1941. https://doi.org/10.1002/pol.1985.180230915
  5. Young, T. H.; Lin, D. T.; Chen, L. Y.; Huang, Y. H.; Chiu, W. Y. Polymer 1999, 40, 5257. https://doi.org/10.1016/S0032-3861(98)00753-8
  6. Caneba, G. T.; Soong, D. S. Macromolecules 1985, 18, 2538. https://doi.org/10.1021/ma00154a031
  7. Tsai, F.; Torkelson, J. M. Macromolecules 1990, 23, 775. https://doi.org/10.1021/ma00205a014
  8. Kim, S. S.; Lloyd, D. R. J. Membr. Sci. 1991, 64, 13. https://doi.org/10.1016/0376-7388(91)80074-G
  9. Castellari, C.; Ottani, S. J. Membr. Sci. 1981, 9, 29. https://doi.org/10.1016/S0376-7388(00)85115-7
  10. Matsuyama, H.; Berghmans, S.; Lloyd, D. R. Polymer 1999, 40, 2289. https://doi.org/10.1016/S0032-3861(98)00040-8
  11. Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K. Macromolecules 2005, 38, 9901. https://doi.org/10.1021/ma051409h
  12. Nguyen, A. M.; Irgum, K. Chem. Mater. 2006, 18, 6308. https://doi.org/10.1021/cm060645j
  13. Tsujioka, N.; Ishizuka, N.; Tanaka, N.; Kubo, T.; Hosoya, K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3272. https://doi.org/10.1002/pola.22665
  14. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  15. Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  16. Sheldon, R. Chem. Commun. 2001, 2399.
  17. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. https://doi.org/10.1021/cr010338r
  18. Song, C. E. Chem. Commun. 2004, 1033.
  19. Yoon, K. R.; Koh, Y.-J.; Choi, I. S. Macromol. Rapid Commun. 2003, 24, 207. https://doi.org/10.1002/marc.200390025
  20. Lee, J. K.; Lee, K.-B.; Kim, D. J.; Choi, I. S. Langmuir 2003, 19, 8141. https://doi.org/10.1021/la034859g
  21. Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.; Namgoong, S. K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126, 480. https://doi.org/10.1021/ja038405h
  22. Choi, D. S.; Kim, D. H.; Shin, U. S.; Deshmukh, R. R.; Lee, S.-g.; Song, C. E. Chem. Commun. 2007, 3467.
  23. Yoon, M. Y.; Kim, J. H.; Choi, D. S.; Shin, U. S.; Lee, J. Y.; Song, C. E. Adv. Synth. Catal. 2007, 349, 1725. https://doi.org/10.1002/adsc.200700039
  24. Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 8615. https://doi.org/10.1002/anie.200803850
  25. Lee, H. Y.; Won, J. E.; Shin, U. S.; Kim, H. W. Mater. Lett. 2011, 65, 2114. https://doi.org/10.1016/j.matlet.2011.04.007

Cited by

  1. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine vol.117, pp.10, 2017, https://doi.org/10.1021/acs.chemrev.6b00562
  2. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: As a sustained drug delivery system vol.442, pp.None, 2015, https://doi.org/10.1016/j.jcis.2014.11.044