Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2295

3D Micromorphology Producing within Poly(lactic acid) Skeleton Using Room-Temperature Ionic Liquids: From Particulate, Fibrous or Porous Scaffolds to Beads  

Shin, Ueon-Sang (Department of Nanobiomedical Science, Dankook University)
Kim, Jong-Gyu (Department of Nanobiomedical Science, Dankook University)
Publication Information
Abstract
We describe herein a three-dimensionally diverse micropatterning of poly(lactic acid), as a biopolymer, using 1-butyl-3-methylimidazolium-based room-temperature ionic liquids (bmim-based RTILs), [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$, Cl). Utilizing the hydrophobic bmim-based RTILs, [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$) and a phase separation technique, we were able to produce white and opaque membranes with a three-dimensional structure closely packed with particles ($10-50{\mu}m$ in diameter). The particlulate structure, made by the assistance of [bmim]$NTf_2$ and DCM, interestingly transformed to a fibrous structure by using a cosolvent, e.g., DCM/$CF_3CH_2OH$. When we used an increased amount of [bmim]$NTf_2$, the particles were effectively detached and macrosized ($100-500{\mu}m$ in diameter) and the oval-shaped beads were obtained in a powder form. By varying the counter-anion type of the imidazolium-based RTIL, for example from $NTf_2^-$ to $Cl^-$, the particulate 3D-morphology was once more transformed to a porous structure. These reserch results could be potentially useful, as a method to fabricate particulate scaffolds, fibrous or porous scaffolds, and beads as a biopolymer device in diverse fields including drug delivery, tissue regeneration, and biomedical engineering.
Keywords
3D micromorphology; Scaffold; Ionic liquid; Particle;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Castellari, C.; Ottani, S. J. Membr. Sci. 1981, 9, 29.   DOI
2 Matsuyama, H.; Berghmans, S.; Lloyd, D. R. Polymer 1999, 40, 2289.   DOI
3 Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K. Macromolecules 2005, 38, 9901.   DOI
4 Nguyen, A. M.; Irgum, K. Chem. Mater. 2006, 18, 6308.   DOI
5 Tsujioka, N.; Ishizuka, N.; Tanaka, N.; Kubo, T.; Hosoya, K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3272.   DOI
6 Welton, T. Chem. Rev. 1999, 99, 2071.   DOI   ScienceOn
7 Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.   DOI   ScienceOn
8 Sheldon, R. Chem. Commun. 2001, 2399.
9 Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667.   DOI   ScienceOn
10 Song, C. E. Chem. Commun. 2004, 1033.
11 Kesting, R. E. Synthetic Polymeric Membranes; Wiley: New York, 1985.
12 Lee, J. K.; Lee, K.-B.; Kim, D. J.; Choi, I. S. Langmuir 2003, 19, 8141.   DOI
13 Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.; Namgoong, S. K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126, 480.   DOI
14 Choi, D. S.; Kim, D. H.; Shin, U. S.; Deshmukh, R. R.; Lee, S.-g.; Song, C. E. Chem. Commun. 2007, 3467.
15 Yoon, M. Y.; Kim, J. H.; Choi, D. S.; Shin, U. S.; Lee, J. Y.; Song, C. E. Adv. Synth. Catal. 2007, 349, 1725.   DOI
16 Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 8615.   DOI
17 Lee, H. Y.; Won, J. E.; Shin, U. S.; Kim, H. W. Mater. Lett. 2011, 65, 2114.   DOI
18 Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Biomaterials 1999, 20, 2363.   DOI   ScienceOn
19 Yoon, K. R.; Koh, Y.-J.; Choi, I. S. Macromol. Rapid Commun. 2003, 24, 207.   DOI   ScienceOn
20 Curtis, A.; Wilkinson, C. Biomaterials 1997, 18, 1573.   DOI   ScienceOn
21 Wijmans, J. G.; Rutten, H. J. J.; Smolders, C. A. J. Polym. Sci. Polym. Phys. 1985, 23, 1941.   DOI
22 Young, T. H.; Lin, D. T.; Chen, L. Y.; Huang, Y. H.; Chiu, W. Y. Polymer 1999, 40, 5257.   DOI
23 Caneba, G. T.; Soong, D. S. Macromolecules 1985, 18, 2538.   DOI
24 Tsai, F.; Torkelson, J. M. Macromolecules 1990, 23, 775.   DOI
25 Kim, S. S.; Lloyd, D. R. J. Membr. Sci. 1991, 64, 13.   DOI