DOI QR코드

DOI QR Code

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan (Engineering Ceramics Department, Korea Institute of Materials Science) ;
  • Ha, Jang-Hoon (Engineering Ceramics Department, Korea Institute of Materials Science) ;
  • Hahn, Yoo-Dong (Engineering Ceramics Department, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Engineering Ceramics Department, Korea Institute of Materials Science)
  • Received : 2012.06.12
  • Accepted : 2012.08.01
  • Published : 2012.08.28

Abstract

$Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

Keywords

References

  1. C. Chuanuwatanakul, C. Tallon, D. E. Dunstan and G. V. Franks: Soft Matter, 7 (2011) 11464. https://doi.org/10.1039/c1sm06477k
  2. X. He, Y. Z. Zhang, J. P. Mansell and B. Su: J. of Mater. Sci. Mater. Med., 19 (2008) 2743. https://doi.org/10.1007/s10856-008-3401-x
  3. Y. W. Lo, W. C. J. Wei and C. H. Hsueh: Mater. Chem. Phys., 129 (2011) 326. https://doi.org/10.1016/j.matchemphys.2011.04.023
  4. A. R. Studart, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler: J. Am. Ceram. Soc., 89 (2006) 1771. https://doi.org/10.1111/j.1551-2916.2006.01044.x
  5. U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort and L. J. Gauckler: J. Am. Ceram. Soc., 90 (2007) 3407. https://doi.org/10.1111/j.1551-2916.2007.01907.x
  6. J. W. Tseng and P.-S. Wu: Ceram. Int., 38 (2012) 2711. https://doi.org/10.1016/j.ceramint.2011.11.039
  7. David Fuks, Gennady E. Shter, Meirav Mann-Lahav and Gideon S. Grader: J. Am. Ceram. Soc., 93 (2010) 3632. https://doi.org/10.1111/j.1551-2916.2010.03948.x
  8. A. R. Studart, R. Libanori, A. Moreno, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler: Langmuir, 27 (2011) 11835. https://doi.org/10.1021/la202384b
  9. T. N. Hunter, R. J. Pugh, G. V. Franks and G. J. Jameson: Adv. Colloid Interface Sci., 137 (2008) 57. https://doi.org/10.1016/j.cis.2007.07.007
  10. F. Krauss Juillerat, U. T. Gonzenbach, A. R. Studart and L. J. Gauckler: Mater. Lett., 64 (2010) 1468. https://doi.org/10.1016/j.matlet.2010.03.062
  11. G. Kaptay: Colloids Surf, 230 (2004) 67.
  12. U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler: J. Am. Ceram. Soc., 90 (2007) 16. https://doi.org/10.1111/j.1551-2916.2006.01328.x
  13. U. T. Gonzenbach, A. R. Studart, E. Tervoort, L. J. Gauckler: Langmuir, 22 (2006) 10983. https://doi.org/10.1021/la061825a
  14. U. T. Gonzenbach, A. R. Studart, E. Tervoort, L. J. Gauckler: Langmuir, 23 (2007) 1025. https://doi.org/10.1021/la0624844

Cited by

  1. Processing Methods for the Preparation of Porous Ceramics vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.389
  2. Experimental Study On Fracture Property Of Tapered Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0153
  3. Experimental Study On Fracture Property Of Double Cantilever Beam Specimen With Aluminum Foam vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0087