• 제목/요약/키워드: Porous metal reactor

검색결과 12건 처리시간 0.028초

고밀도스트리머를 이용한 $CF_{4}$ 분해특성 (The characteristic of $CF_{4}$ decomposition for High density streamer)

  • 송원섭;박재윤;정장근;김종석;김태용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.133-137
    • /
    • 2002
  • In this paper, the $CF_{4}$ decomposition rate are investigated for a simulated three plasma reactors which are metal particle reactor, spiral wire reactor and reactor with porous dielectric as applied voltage. The $CF_{4}$ decomposition rate by plasma reactor with porous dielectric had a gain of 20~25[%] over that by plasma reactor with spiral wire or metal particle electrode. The $CF_{4}$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_{4}$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. However, decomposition efficiency is more than 90% in case of the reactor with porous dielectric. we think, the reactor with porous dielectric should be much better than other reactors for $CF_{4}$ decomposition.

  • PDF

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

접시형 고온 태양열 화학 반응기의 열전달 및 수소생산 성능 분석 (Performance Analysis of Heat Transfer Characteristic and Hydrogen Product for Dish Type Solar Chemical Reactor)

  • 양승복;고만석;오상준;서태범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.774-779
    • /
    • 2009
  • The purpose of this research is to develop the high performance of solar chemical reactor for producing hydrogen by methane reforming reaction with steam. Two shape of chemical reactor is suggested: first type is filled with porous material and second type is spiral type. These reactors is installed on the dish-type thermal system of Inha University, Inha Dish-1. Performance analysis of these two reactors is conducted from getting methane conversion.

  • PDF

컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구 (A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System)

  • 임수빈
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

고온 태양열 화학반응기 열전달 성능 평가 (Estimation of Heat Transfer Characteristics for a Solar Chemical Reactor)

  • 강경문;이주한;조현석;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2221-2226
    • /
    • 2008
  • The objective of this paper is to describe the experimental and numerical investigation of the analysis of the heat transfer in a solar chemical reactor. These are compared about methane steam reforming process in the solar chemical reactor which was a volumetric absorber consisting of honeycomb and a multilayered catalyst supports. With this high operating temperature, convective heat loss, thermal fracture are important features for designing SCR. In order to estimate the system performance and to design the actual solar reactor with various conditions, CFD analysis was used in this study. The nickel oxide porous metal is inserted inside the solar chemical reactor to increase the conversion rate of the reforming reaction. Simulation has been carried out based on the experimental data. According to the simulation results, the optimum methane-steam mole ratio and thickness and numbers of catalyst supports were obtained.

  • PDF

불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성 (Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System)

  • 이용환;임수빈
    • 한국지반환경공학회 논문집
    • /
    • 제15권12호
    • /
    • pp.25-34
    • /
    • 2014
  • 천연제올라이트와 제강전로슬래그를 목분과 함께 혼합 소성한 구형(Spherical type)의 다공성 ZSF 세라믹이 충진된 컬럼을 통해 산성광산배수의 처리 가능성을 파악하고 미세분석을 이용하여 산성광산배수 내 중금속의 제거기작을 연구하고자 하였다. 운전기간 110일(약 3.7개월) 동안 중금속의 평균 제거효율은 Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3, Zn 80.8 %로서 높은 중금속 제거효율을 장기간 유지하는 것으로 나타났다. 컬럼연속 실험에서 다공성 ZSF 세라믹의 평균 중금속 제거능은 Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36, Zn $3.76mg/kg{\cdot}day$로 파악되었다. SEM, EDS 및 XRD을 이용한 미세분석 결과 산성광산배수 내 중금속은 다공성 ZSF 세라믹에 의해 중화침전뿐만 아니라 흡착 및 이온교환 등 복합적인 기작에 의해 제거될 수 있다는 사실을 나타내고 있었다. 컬럼연속 실험을 통해 다공성 ZSF 세라믹은 산성광산배수 내 중금속을 장기간 안정적으로 제거할 수 있는 효과적인 처리제임을 확인할 수 있었다.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

TiO2 담지 세라믹 필터를 활용한 아세톤 제어에 관한 연구 (Reduction of Gaseous Acetone by using TiO2 Coated Woven Filters)

  • 윤정호;박덕신;이주열;조영민
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2003
  • A new type of catalytic filers has been developed in this work. A porous photocatalytic filter was prepared by coating the titania (anatase phase) powder onto the woven metal mesh. The coating sol was prepared with unique cera-mic binder, and would assist drying condition and enhance the mechanical strength of the final ceramic filers. As a result of the test for acetone decomposition, it was found to be quite effective for the photocatalytic reaction as good at conventional glass reactors which were coated inside. The present filter type reactor is expected as one of plausible devices for the simultaneous treatment of gas - particulate materials.

불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(I) - 회분식 실험을 통한 산성광산배수의 처리특성 (Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (I) - Treatment of AMD in a Batch Reactor System)

  • 이용환;임수빈
    • 한국지반환경공학회 논문집
    • /
    • 제15권12호
    • /
    • pp.15-24
    • /
    • 2014
  • 천연제올라이트와 불가사리를 목분과 함께 혼합 소성한 펠렛형 Zeolite-StarFish 세라믹(ZSF 세라믹)을 이용하여 산성광산배수 내 중금속의 제거특성 및 영향인자를 파악하고자 하였다. ZSF 세라믹에 의한 중금속의 제거반응은 초기 3시간까지 빠른 속도로 진행되었으며 높은 알칼리 상태를 나타내었다. 중금속 제거를 위한 ZSF 세라믹의 최적 소성온도는 $800{\sim}1,000^{\circ}C$로 파악되었으며 소성시간에 따른 중금속 제거효율의 변화는 거의 나타나지 않았다. ZSF 세라믹의 최적 투여농도는 1.0~1.2 %임을 알 수 있었고, 1.0 % 이상의 ZSF 세라믹의 투여농도 조건에서는 Pb 85.5 %를 제외한 Al, As, Cd, Cu, Fe, Mn, Zn 대부분의 중금속이 95 % 이상의 높은 제거효율을 나타내었다. 목분의 배합비가 증가할수록 중금속 제거효율은 증가하였으며 목분의 적정 배합비는 10 %로 파악되었다. 회분식 실험을 통해 불가사리 소재의 ZSF 세라믹은 산성광산배수 내 중금속을 효과적으로 제거할 수 있는 처리제임을 알 수 있었으며, 특히 목분을 첨가한 다공성 ZSF 세라믹을 통해서는 산성광산배수 내 중금속의 제거효율을 더욱 향상시킬 수 있었다.