• 제목/요약/키워드: Porous Sheet

검색결과 69건 처리시간 0.025초

수용성 입자를 이용한 다공성 폴리머 구조체의 공극률 향상과 기계적 물성과의 관계 (Relationship between Mechanical Properties and Porosity of Porous Polymer Sheet Fabricated using Water-soluble Particles)

  • 소새롬;박석희;박상후
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.16-23
    • /
    • 2018
  • A polymer porous sheet, which can be applied to diverse wearable devices, has some advantages such as light-weight, high flexibility, high elongation, and so many others. In order to fabricate a porous sheet, water-soluble particles like sugar were utilized frequently, and there has been great advances. However, with our best knowledge, there are not enough reports on the mechanical behavior of porous sheets having different porosity. So, in this work, we tried to find out the relationship between porosity and mechanical deformation of a porous sheet. The process parameters such as a particle size, sheet thickness and PDMS mixing ratio with curing agent were analyzed on the effect of increasing the porosity of a sheet. Also, mechanical deformation of a sheet was tested using a tensile experiment. Through the experimental results, we make a conclusion that a highly porous sheet with thin thickness has high flexibility, and it deformed nearly double elongation comparing to worst one among nine cases.

Driving Forces of Silver Nano-porous Sheet Die Bonding at 145 ℃ and 175 ℃ in the Air

  • YehRi Kim;Eunjin Jo;Dongjin Kim
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.91-98
    • /
    • 2024
  • This study reveals the feasibility and effectiveness of sinter bonding using an Ag nano-porous sheet at the lowest "theoretically" possible temperature of 145 ℃. By uniform pressure of 10 MPa for bonding times of 5 min and 10 min at 145 and 175 ℃, we achieved bonding strengths exceeding approximately 20 MPa with a only 5 min of bonding time at 145 ℃. In particular, it is interesting to note that in the pressure sintering bonding process at 145 ℃, bonding times of 5 and 10 min had no significant difference in strength. Even with a bonding temperature of 175 ℃, the difference in average bonding strength between bonding times of 5 min (i.e., 37.6 MPa) and 10 min (i.e., 43.0 MPa) was only 5 MPa. The bonding strength was fundamentally attributed to the thickness of the Ag sintered neck in the Ag sintered layer. Microstructural analysis revealed that as the bonding temperature increased to 175 ℃, the fraction of CSL Σ3 boundaries within the Ag sintered layer increased, indicating greater coalescence of Ag particles. This study systematically investigated the mechanism of bonding strength in extremely low-temperature pressure Ag sinter bonding, considering the relationship between microstructures and mechanical behaviors.

이중층 자가조립 공정을 활용한 롤형태의 생체의료용 마이크로섬유 구조체 제작 (Fabrication of Microfibrous Structures with Rolled-Up Forms using a Bilayer Self-Assembly Process)

  • 김영서;박석희
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.79-86
    • /
    • 2022
  • Numerous fabrication techniques have been used to mimic cylindrical natural tissues, such as blood vessels, tendons, ligaments, and skeletal muscles. However, most processes have limitations in achieving the biomimetic properties of multilayered and porous architectures. In this study, to embrace both features, a novel self-assembly method was proposed using electrospun microfibrous sheets. A bilayer microfibrous structure, comprising two sheets with different internal stresses, was fabricated by electrospinning a polycaprolactone (PCL) sheet on a uniaxially stretched thermoplastic polyurethane (TPU) sheet. Then, by removing the stretching tension, the sheet was rolled into a hollow cylindrical structure with a specific internal diameter. The internal diameter could be quantitatively controlled by adjusting the thickness of the PCL sheet against that of the TPU sheet. Through this self-assembly method, biomimetic cylindrical structures with multilayer and porous features can be manufactured in a stable and controllable manner. Therefore, the resulting structures may be applied to various tissue engineering scaffolds, especially vascular and connective tissues.

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

광학현미경을 이용한 유연다공표면의 3차원 자유곡면 형상 측정시스템 (Three Dimensional Profile Measurement System for Flexible and Porous Sculptured Surfaces by Using Optical Microscope)

  • Park, H.G.;Kim, S.W.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.22-29
    • /
    • 1997
  • This paper describes a three dimensional profile measurement method for sheet metal products which have flexible and porous sculptured surfaces. Shadow masks are used as measuring objects for practical implementation or this study. The shadow masks are located inside the fluorescent glasses of monitors for televisions or computers and used to prevent electron guns from interfering between pixels. Three dimen- sional surface profiles are measured by adopting a software autofocusing technique to capture focused images. The experimental results show that the method is very effecive and suitable for sheet meal prod- ucts with flexible and porous surfaces.

  • PDF

티타늄 강화 다공성 폴리에틸렌을 이용한 외상성 안구 함몰의 교정 (Correction of the Traumatic Enophthalmos Using Titanium Reinforced Porous Polyethylene)

  • 이재열;김용덕;신상훈;김욱규;정인교;황대석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제35권3호
    • /
    • pp.184-188
    • /
    • 2013
  • Post-traumatic enophthalmos is a relatively common problem following orbitozygomatic fractures. Bony-volume expansion and soft tissue atrophy are considered the main etiological causes of this condition. Enophthalmos is corrected mostly through reducing the enlarged orbit volume. Autogenous graft and various alloplastic materials are used for this purpose. Porous polyethylene is highly biocompatible, durable, and remarkably stable. Also, the titanium plate embedded in a porous polyethylene sheet provides radiographic visibility and increased sheet strength and contour retention. We present experiences of titanium reinforced porous polyethylene for correction of the traumatic enophthalmos with literature review.

파랑중 유연한 그물망의 응답특성 해석 (Analysis on Response Characteristics of a Flexible Net Sheet in Waves)

  • 조일형
    • 한국해안·해양공학회논문집
    • /
    • 제24권2호
    • /
    • pp.89-96
    • /
    • 2012
  • 유탄성이론과 고유함수전개법에 기초하여 규칙파중 유연한 그물망의 동적거동과 파랑하중을 살펴보았다. 그물망은 일정한 잠긴깊이를 가지고 수직으로 설치되어 있으며, 상단 끝은 수면에 고정되어 있고 하단 끝은 추에 연결되어 있다. 초기장력이 충분히 크다고 가정하여 장력의 동적 성분을 무시하였다. 유연한 그물망에서의 경계조건식은 투과효과를 나타내는 Darcy의 법칙과 유연성을 나타내는 물체 경계조건식이 결합된 형태이다. 개발된 해석모델은 불투과성/투과성 수직판과 유연막 모델로 확장이 가능하다. 해석모델을 이용하여 여러 설계변수(파랑특성, 공극율, 잠긴깊이, 초기장력)들의 변화가 그물망의 파랑하중과 거동특성에 미치는 영향을 살펴보았다.

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

다공성 확산층을 이용한 한계전류형 지르코니아 산소센서 (Limit-current type zirconia oxygen sensor with porous diffusion layer)

  • 오영제;이칠형
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.