DOI QR코드

DOI QR Code

Analysis on Response Characteristics of a Flexible Net Sheet in Waves

파랑중 유연한 그물망의 응답특성 해석

  • Cho, Il-Hyoung (Department of Ocean System Engineering, Jeju National University)
  • 조일형 (제주대학교 해양시스템공학과)
  • Received : 2012.01.02
  • Accepted : 2012.03.28
  • Published : 2012.04.30

Abstract

Based on the hydroelastic theory and the matched eigenfunction expansion method(MEEM), the dynamic behavior of the porous flexible net sheet and wave forces have been investigated in monochromatic waves. The net sheet is installed vertically with the submergence depth. Top end of a net sheet is fixed and its lower end is attached by a clump weight. It is assumed that the initial tension is sufficiently large so that the effects of dynamictension variation can be neglected. The boundary condition on the porous flexible net sheet is derived based on Darcy's fine-pore model and body boundary condition. The developed analytic model can be extended to the impermeable/permeable vertical plate and the impermeable flexible membrane. The analytical model was used to study the influence of design parameters(wave characteristics, porosity, submergence depth, initial tension) on the response characteristics and wave load of the net sheet.

유탄성이론과 고유함수전개법에 기초하여 규칙파중 유연한 그물망의 동적거동과 파랑하중을 살펴보았다. 그물망은 일정한 잠긴깊이를 가지고 수직으로 설치되어 있으며, 상단 끝은 수면에 고정되어 있고 하단 끝은 추에 연결되어 있다. 초기장력이 충분히 크다고 가정하여 장력의 동적 성분을 무시하였다. 유연한 그물망에서의 경계조건식은 투과효과를 나타내는 Darcy의 법칙과 유연성을 나타내는 물체 경계조건식이 결합된 형태이다. 개발된 해석모델은 불투과성/투과성 수직판과 유연막 모델로 확장이 가능하다. 해석모델을 이용하여 여러 설계변수(파랑특성, 공극율, 잠긴깊이, 초기장력)들의 변화가 그물망의 파랑하중과 거동특성에 미치는 영향을 살펴보았다.

Keywords

References

  1. 조일형 (2002). 수평형 타공판의 소파특성. 한국해안.해양공학회지, 14(4), 265-273.
  2. 조일형 (2011). 원통형 양식시설물에 작용하는 파랑하중. 한국해안.해양공학회지, 23(1), 63-69.
  3. Aarsens, J.V., Rudi, H. and Loland, G., (1990). Current forces on cage, net deflection. in Engineering for Offshore Fish Farming, Thomas Telford, London, 137-152.
  4. Cho, I.H. and Kim, M.H. (2008). Wave absorbing system using inclined perforated plates. J. of Fluid Mechanics, 608, 1-20.
  5. Chwang, A.T. (1983). A porous wavemaker theory. J. of Fluid Mechanics, 132, 395-406 https://doi.org/10.1017/S0022112083001676
  6. Chwang, A.T. and Wu, J. (1994). Wave scattering by submerged porous disk. J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, 120, 2575-2587.
  7. Fredheim, A. and Faltinsen, O.M. (2001). A numerical model for the fluid structure interaction of a three-dimensional net structure. Proc. 5th International Workshop DEMaT''01, Rostock, Germany.
  8. Huang, C.C., Tang, H.J. and Liu, J.Y. (2007). Modeling volume deformation in gravity-type cages with distributed bottom weights or a rigid tube-sinker. Aquacultural Engineering 37(2), 144-157. https://doi.org/10.1016/j.aquaeng.2007.04.003
  9. Huang, C.C., Tang, H.J. and Liu, J.Y. (2008). Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering, 38(2), 105-116. https://doi.org/10.1016/j.aquaeng.2008.01.003
  10. Kim, M.H. and Kee, S.T. (1996). Flexible membrane wave barrier. Part 1. Analytic and numerical solutions. J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, 122(1), 46-53. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:1(46)
  11. Lader, P., Enerhaug, B., Fredheim, A. and Krokstad, J. (2003). Modeling of 3D Net Structures Exposed to Waves and Current. SINTEF Fisheries and Aquaculture. Trondheim, Norway.
  12. Loland, G. (1991). Current forces on and flow through fish farms. In: Division of Marine Hydrodynamics, Norwegian Institute of Technology, Trondheim, Norway.
  13. McIver, P. (1985). Scattering of water waves by two surface-piercing vertical barrier. IMA J. of Appl. Math., 35, 339-355. https://doi.org/10.1093/imamat/35.3.339
  14. Morse, P.M. and Feshbach, H. (1953). Methods of theoretical physics. McGraw-Hill Co.
  15. Porter, R. and Evans, D.V. (1995). Complementary approximation to wave scattering by vertical barriers. J. of Fluid Mechanics, 294, 155-180. https://doi.org/10.1017/S0022112095002849
  16. Tsukrov, I., Eroshkin, O., Fredriksson, D., Robinson, S.M. and Celikkol, B. (2003). Finite element modelling of net panels using a consistent net element. Ocean Engineering, 30, 251-270. https://doi.org/10.1016/S0029-8018(02)00021-5
  17. Tsukrov, I., Eroshkin, O., Paul, W. and Celikkol, B. (2005). Numerical modeling of nonlinear elastic components of mooring systems. IEEE Journal of Oceanic Engineering, 30(1), 37-46. https://doi.org/10.1109/JOE.2004.841396
  18. Yu, X. (1995). Diffraction of water waves by porous breakwaters. J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, 121(6), 275-282. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)