• Title/Summary/Keyword: Porous Materials

Search Result 1,739, Processing Time 0.039 seconds

Design and Preliminary Performance Test for 5kWt Dish Solar Collector ($5kW_t$급 접시형 태양열 집열기의 설계 및 예비 성능실험)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Seo, Tae-Beom;Han, Gui-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.113-120
    • /
    • 2007
  • The 5kWt dish solar collector is designed and the preliminary performance test for this is carried out. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small reflectors which have their own curvatures, and the effective reflecting area is $5.9\;m^2$, and the rim angle of the dish is $43.85^{\circ}$. The reflectivity of reflectors is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakage. In order to increase the heat transfer area, porous materials (nickel-alloy) are inserted into the receiver. Air flows into the upper part of the receiver which is the opposite side of the aperture. After the air flows through the inside of the receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases.

Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials (축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성)

  • Kim, Sug-Hwan;Jeong, Su-Gwang;Lim, Jae-Han;Kim, Su-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.

Effect of Gelatin Particles on Cell Proliferation in Polymer Scaffolds Made Using Particulate Leaching Technique. (Particulate Leaching 기법을 사용한 Polymer Scaffold 상의 세포증식에 있어서 젤라틴 입자의 효과)

  • 서수원;신지연;김진훈;김진국;길광현
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • On the background of general idea and technique of bioscience, medicine and engineering, tissue engineering aim at maintenance, improvement and repair of human body function through manufacturing and transplantation of artificial tissue and organ exchangeable human body. Basic material used in the area is scaffold that aid tissue and organ formation. Making scaffold, solvent-casting and particulate leaching technique is widely used in manufacturing of porous polymer scaffold. There are many types of particle including salt and gelatin. Salt is a most commonly used particulate because it is easily available and very easy to handle and gelatin particle is another candidate for this method because it is known as a material, which enhances cell attachment and proliferation. But there is no comparative study of two kinds of materials. In this study we compared the biocompatibility of the two scaffolds made from salt(salt scaffold) and gelatin particle (gelatin scaffold). These results demonstrated that gelatin scaffold showed better attachment of cells at the initial stage and better proliferation of cells. The better performance of gelatin scaffold is contributed to the better connection of pores in the same porosity.

Room Acoustic Design in International Convention Center Jeju (제주국제컨벤션센터 컨퍼런스홀의 건축음향 설계)

  • 주현경;오양기;두세진;김하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.802-807
    • /
    • 2003
  • International Convention Center Jeju(ICCJ) was planed and built for accommodating a variety of conventional and exhibitional activities. For a better flexibility of operation, almost all rooms in ICCJ are designed to be subdivided Into a couple of small rooms with installation of movable partition walls. Architectural and acoustical design should be deliberatively and cooperatively undertaken to cope with such a complex condition. Conference hall, the largest room in ICCJ, has a capacity of 5000 seats who:1 used as a whole. It could be divided into 3 halls, one with 2000 pre-installed seats on slanted floor, up/down removable stage and its settings above, and the other 2 flat rooms with no seats installed. A devided hall with pre-installed seats and stage is designed for a multi-use auditorium. Almost all surfaces except ceilings adjacent to the stage are sound absorptively treated, in regard to extensive use of sound reinforcement systems. Its reverberation time 1.65 sec without audience, which is roughly correspond to 1.50 sec with fully occupied audience. When there is a need for a larger room, all the partition wail Is removed and the hall could be used as a whole. Exhibition hall is located in the first floor of ICCJ. Absorption and softness are needed for the hat 1 because exhibition behavior has something noisy features. Perforated MDF panels with porous materials and air space in the back groundare adopted for the walls. There are one large, two medium, and several small convention rooms in ICJJ. The room are also acoustically designed for maximum flexibility with no defects soundwisely.

  • PDF

New bone formation using fibrin rich block with concentrated growth factors in maxillary sinus augmentation (성장 인자가 농축된 Fibrin rich block을 이용한 상악동 거상술에서의 신생골 형성에 관한 연구)

  • Kim, Ji-Min;Lee, Ju-Hyoung;Park, In-Sook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • Introduction: This study examined the predictability of new bone formation in the pneumatized maxillary sinus using only fibrin-rich blocks with concentrated growth factors as an alternative to bone grafts. Materials and Methods: Maxillary sinus augmentation was performed in thirty-three patients with a deficient alveolar bone height (mean 3.9 mm). All patients were treated consecutively with sinus membrane elevation via the lateral window approach and panoramic radiograms and cone-beam computed tomograms were taken to evaluate the remaining bone height and the new bone formation in the maxillary sinus, before and after surgery. Four biopsy specimens were taken at the time of implant consolidation (after an average of five months healing) and were stained by H & E and Trichrome staining. Results: None of the patients had postoperative complications during implant consolidation. After an average of 5 months since sinus augmentation, newly formed bone was observed in all cases by a radiographic evaluation. In 4 biopsy samples, newly formed bone was observed along the floor of the replaced bony window. The osteoblast lining and well distinguished Osteocytes in the lacunas were observed in the newly formed bone. Of the 74 implants (4 different surfaced implants - resorbable blast media-surfaced (RBM), Hydroxyapatite (HA) coated, acid-etched, sintered porous-surfaced implant) placed, one RBM implant failed. The success rate was 98.6% after a mean of 15 months. Discussion: These results suggest that maxillary sinus augmentation using fibrin rich block with concentrated growth factors is a successful and predictable technique.

Study on the Water Penetration in Mortar by Water Pressure (수압에 따른 모르타르내 수분침투에 관한 연구)

  • Yoo, Jo-Hyeong;Lee, Han-Seung;Cho, Hyeong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-508
    • /
    • 2008
  • Concrete is a type of porous materials and is physically and chemically damaged due to exposure to various environments from the placing to the service life. These reactions affect the corrosionof steel bars applied in concrete and that decreases the durability life and strength of such steel bars. Thus, it is very important to insert rust inhibitors into steel bars in the case of a deterioration element that exceeds the critical amount of corrosion in the location of steel bars. However, it is very difficult to guarantee corrosion resistance at the location of steel bars using conventional technology that applies corrosion inhibitors only on the surface of concrete. This study attempts to develop a method that penetrates corrosion inhibitors up to the location of steel bars and investigate the penetration depth of corrosion inhibitors by verifying moisture migration in concrete under an applied pressure.

  • PDF

Studies on the Modeling of the Preparation of the C/SiC Composite for catalyst support by CVI (화학증기침투에 의한 촉매지지체용 C/SiC 복합체 제조에 관한 수치모사 연구)

  • 이성주;김미현;정귀영
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2000
  • In this research, the mathematical modeling of the formation of SiC layer on the activated carbon was studied to improve the durability and the oxidation resistance of catalyst supports. SiC layer on the activated carbon was formed by permeating SiC from dichlorodimethylsilane(DDS) into pores and depositing while the porous structure was kept. The best conditions of manufacturing the support were found by studying the characteristics of SiC/C which was modelled under various deposition conditions. Changes of the amount of deposition, the pore diameter, the surface area with time were obtained by simulating convection, diffusion and reaction in an isothermal reactor at a steady state. The uniform deposition in the pores of samples was obtained at a lower concentration of the reactant and a lower pressure. Additionally, it was observed that the pore diameter and the surface area have points of inflection at certain times of deposition, because deposition occurred on the inside surface of the pore at first and then on the outside surface of the particle.

  • PDF

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect (폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안)

  • Lee, Jeong-Ho;Park, Seong-Bo;Kim, Seul-Kee;Bang, Chang-Seon;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.