• 제목/요약/키워드: Porous $SnO_2$

검색결과 32건 처리시간 0.023초

CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향 (Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn)

  • 김주형;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.49-53
    • /
    • 2016
  • The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

분말 스퍼터링과 후열처리 복합 공정으로 제조한 주석 함유 갈륨 산화물 다공성 나노와이어 (Porous Sn-incorporated Ga2O3 nanowires synthesized by a combined process of powder sputtering and post thermal annealing)

  • 이하람;강현철
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.245-250
    • /
    • 2019
  • 라디오주파수 분말 스퍼터링 방법으로 sapphire (0001) 기판 위에 Sn을 함유한 β-Ga2O3(β-Ga2O3 : Sn) 나노와이어를 증착하였다. 후열처리 공정의 가스 분위기가 나노와이어 형상의 변화에 미치는 영향을 연구하였다. 800℃에서 진공 중 열처리 과정에서, as-grown 나노와이어는 다공성 구조로 전이하였다. 비화학양론 Ga2O3-x는 화학양론 Ga2O3로 바뀌고, Sn원자는 응집하여 나노클러스터를 형성한다. Sn 나노클러스터는 증발하여 Sn 원자의 함량은 1.31에서 0.27 at%로 감소하였다. Sn원자의 증발로 인하여 나노와이어 표면에 다수의 기공이 형성되고, 이는 β-Ga2O3 : Sn 나노와이어의 체적대비 표면적 비율을 증가시킨다.

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

금속산화물 복합분말의 동결건조 및 수소분위기 환원처리에 의한 Cu-Sn 다공체 제조 (Synthesis of Porous Cu-Sn by Freeze Drying and Hydrogen Reduction Treatment of Metal Oxide Composite Powders)

  • 김민성;유호석;오승탁;현창용
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.722-726
    • /
    • 2013
  • Freeze drying of a porous Cu-Sn alloy with unidirectionally aligned pore channels was accomplished by using a composite powder of CuO-$SnO_2$ and camphene. Camphene slurries with CuO-$SnO_2$ content of 3, 5 and 10 vol% were prepared by mixing with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry was done at $-25^{\circ}C$ while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies were hydrogen-reduced at $650^{\circ}C$ and then were sintered at $650^{\circ}C$ and $750^{\circ}C$ for 1 h. XRD analysis revealed that the CuO-$SnO_2$ powder was completely converted to Cu-Sn alloy without any reaction phases. The sintered samples showed large pores with an average size of above $100{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores. The size of the large pores decreased with increasing CuO-$SnO_2$ content due to the change of the degree of powder rearrangement in the slurry. The size of the small pores decreased with increase of the sintering temperature from $650^{\circ}C$ to $750^{\circ}C$, while that of the large pores was unchanged. These results suggest that a porous alloy body with aligned large pores can be fabricated by a freeze-drying and hydrogen reduction process using oxide powders.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • 센서학회지
    • /
    • 제27권5호
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

양극산화법에 의한 다공성 SnO2 피막 (Porous SnO2 Films Fabricated Using an Anodizing Process)

  • 한혜정;최재호;민석홍
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.503-510
    • /
    • 2006
  • The measurement of specific gases is based on the reversible conductivity change of sensing materials in semiconductor type gas sensors. For an application as gas sensors of high sensitivity, porous $SnO_2$ films have been fabricated by anodizing of pure Sn foil in oxalic acid and characteristics of anodic tin oxide films have been investigated. Pore diameter and distribution were dependent on process conditions such as electrolyte concentration, applied voltage, anodizing temperature, and time. Characteristics of anodic films were explained with current density-time curves.

양극산화법으로 제작된 나노 다공성 주석 산화물 박막 (Nano Porous Tin Oxide Film Fabricated by Anodization)

  • 문규식;천세준;노희규;천승철;박성용;이로운;박용준;최원열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.328-328
    • /
    • 2007
  • $SnO_2$ has a high potential for electric and electronic applications. We have anodized pure tin metal and nano porous tin oxide film was obtained on pure Sn. Nano porous tin oxide were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 100 V. Pore size of ~100nm was observed by FE-SEM. Pore sizes as a function of applied voltage and anodizing time were characterized. We obtained nano porous tin oxide film having an uniform pore size at low temperature. High specific surface area of $SnO_2$ will be very useful for gas sensor, lithium battery, and dye sensitized solar cell.

  • PDF

라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리 (Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering)

  • 이하람;정병언;양명훈;이종관;최영빈;강현철
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.

염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조 (Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry)

  • 방수룡;오승탁
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.27-31
    • /
    • 2015
  • This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

다공성 나노구조 SnO2 가스 검지 특성 (Characteristic of SnO2 Gas Sensing with porous nano structure)

  • 한민아;김현종;이호년
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.250-250
    • /
    • 2015
  • 사람의 후각으로 감지할 수 없는 독성, 폭발성 가스로 인한 사고 발생률이 높아지면서 고감도의 가스 센서 필요성이 증가 되고 있다. 본 연구에서는 안정적인 가스 감지를 위해 물리기상증착의 다양한 공정 조건을 변화시켜 다공성 나노구조의 $SnO_2$ 가스 검지 전극층을 제작하였다. SEM 분석을 통하여 $SnO_2$ 가스 검지층이 다공성 나노 구조를 지님을 확인하였고, TEM 분석을 통하여 $SnO_2$ 입자간의 안정적인 접합을 확인하였다. 또한 다공성 나노 구조의 $SnO_2$를 가스 검지층으로 사용하여 가스센서를 제작하였고, 가스 농도에 따른 감도 변화를 확인 할 수 있었다.

  • PDF