• Title/Summary/Keyword: Porosity

Search Result 3,545, Processing Time 0.028 seconds

Numerical Study on the Effects of GDL Porosity on the PEMFC Performance (기체확산층의 기공률이 고분자 전해질 연료전지 성능에 미치는 영향에 관한 전산해석 연구)

  • Kim, Kyoung-Youn;Sohn, Young-Jun;Kim, Min-Jin;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1022-1030
    • /
    • 2009
  • Numerical analysis was carried out to investigate the effect of GDL (Gas diffusion layer) porosity on the performance of PEMFC (proton exchange membrane fuel cell). A complete three-dimensional model was chosen for single straight channel geometry including cooling channel. Main emphasis is placed on the heat and mass transfer through the GDL with different porosity. The present numerical results show that at high current densities, the cell voltage is influenced by the GDL porosity while the cell performance is nearly the same at low current densities. At high current densities, low value of GDL porosity results in decrease of the fuel cell performance since the diffusion of reactant gas through GDL becomes slow with decreasing porosity. On the other hand, for high GDL porosity, the effective thermal conductivity becomes low and the heat generated in the cell is not removed rapidly. This causes the temperature of fuel cell to increase and gives rise to dehydration of the membrane, and ultimately increase of the ohmic loss.

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

Simulation of Pore Interlinkage in the Rim Region of High Burnup $UO_2$Fuel

  • Koo, Yang-Hyun;Oh, Je-Yong;Lee, Byung-Ho;Cheon, Jin-Sik;Joo, Hyung-Koo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • Threshold porosity above which fission gas release channels would be formed in the rim egion of high burnup UO$_2$ fuel was estimated by the Monte Carlo method and Hoshen-Kopelman algorithm. With the assumption that both rim pore and rim grain can be represented by cube, pore distribution in the rim was simulated 3-dimensionally by the Monte Carlo method according to porosity and pore size distribution. Then, using the Hoshen-Kopelman algorithm, the fraction of open rim pores interlinked to the outer surface of a fuel pellet was derived as a function of rim porosity. The simulation showed that porosity of 24-25% is the threshold above which the number of rim pores forming release channels increases very rapidly. On the other hand, channels would not be formed if the porosity is less than about 23.5%. This is consistent with the observation that, for porosity less than 23.5%, almost no fission gas is released in the rim. However, once the rim porosity reaches beyond 25%, extensive open paths would be developed and considerable fission gas release would start in the rim.

The Effects of Construction of Tipping Paper and Plug Wrap Permeability on the Dual Cigarette Filter Ventilation (팁페이파 및 필터권지 기공도 조합이 이중필터 제품담배 공기희석율에 미치는 영향)

  • 김정열;김종열;신창호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • There are many combination with the porosity of tipping paper and plug wrap for a design of ventilation rate of cigarette. This study was carried out to determine the effect of a design of permeability of tipping paper and inner or outer of plug wrap on the ventilation rate of cigarette with constant pressure drop in column part and filter part. Our results indicated that the higher the plugwrap porosity, the higher the ventilation rate and the less variable of cigarette in case of mono filter. But, in case of duel filter, the ventilation rate of cigarette was depended on the manufacturing method of filter plug, even though using the same porous plug wrap on inner and outer of filter. We also found that the porosity of outer plug wrap was more effect on the ventilation rate than the porosity of inner plug wrap. As the high porosity of inner plug wrap compared with the porosity of outer plug wrap, the less variable of ventilation rate of cigarette in any combination of the porosity of plug wrap. When we used the higher porous outer plug wrap than inner plug wrap, the ventilation rate of cigarette was high. Also, the higher the inner plug wrap porosity, the less variable of ventilation rate of cigarette.

A Study to Effect on the Porosity when Model Making for Control of Vibrator (진동기의 단계별 조절이 모형 제작시 기포발생에 미치는 영향에 관한 연구)

  • Lee, Do-Kyeng
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.15-19
    • /
    • 1991
  • This study was made to effect on the porosity when model making for control of vibrator. Samples of total 600 were made by plaster and stone divided low, medium and high which is 100 each. The following results were obtained to observation porosity of surface by eyes. 1. Second stage was fewer than third stage, first stage was fewer than third stage in porosity number of plaster model. 2. Second stage was fewer than first stage in porosity number of stone model. 3. Stone model was fewer than plaster model in porosity number of third stage.

  • PDF

Effect of pore size and porosity on electrical breakdown behaviors of $BaTiO_3$ ceramics ($BaTiO_3$ 세라믹의 절연파괴거동에 미치는 기공의 크기와 기공율의 영향)

  • 조경호;우동찬;남효덕;이희영
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.255-261
    • /
    • 1997
  • In this study, pore-containing barium titanate ceramics were prepared with different porosities and pore sizes, in order to better understand how porosity and pore size affect electrical breakdown of barium titanate ceramics. A granulated barium titanate powder was mixed with three grades of commercial polymer microspheres up to 11wt%. The electrical breakdown test was performed at two different temperatures of 30.deg. C(below Tc) and 150.deg. C(above Tc) for samples immersed in a silicon oil bath using a 60kV de power supply. Electrical breakdown strength of pore containing barium titanate ceramics with porosity lower than 10% decreased as pore size and porosity increased. However, above the 10% porosity region, electrical breakdown strength decreased as the pore connectivity increased. From the experimental results, an optimum electrical breakdown model is proposed in an attempt to explain the effect of pores.

  • PDF

The study on effects of porosity grain size, magnetization and anisotropy field on the properties of ferromagnetic resonance (다결정 Mg-페라이트의 기공율, 입경, 포화 자화 및 이방성 자기장이 강자성 공명 특성에 미치는 영향 연구)

  • 김진호;주승기;최덕균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.97-102
    • /
    • 1995
  • The ferromagnetic resonance properties of Mg ferrites which have various porosity grain size, and saturation magnetization are measured at one frequency. This allows a determination of the anisotropy field(Ha). The saturation magnetization multiplied by porosity is the resonance magnetic field. As the saturation magnetization increases, the linewidth decerases due to decrement of magnetic inhomogenity in sample. the porosity is a major factor broadening the linewidth for Mg ferrite when porosity is more thatn 6%, and the anisotropy field is dominant when porosity is less than 6%.

  • PDF

Post-buckling responses of functionally graded beams with porosities

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.579-589
    • /
    • 2017
  • The objective of this work is to analyze post-buckling of functionally graded (FG) beams with porosity effect under compression load. Material properties of the beam change in the thickness direction according to power-law distributions with different porosity models. It is known that post-buckling problems are geometrically nonlinear problems. In the nonlinear kinematic model of the beam, total Lagrangian finite element model of two dimensional (2-D) continuum is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution, porosity parameters, compression loads on the post-buckling behavior of FG beams are investigated and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in post-buckling case.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Effects of Substrate Materials on the Porosity Formation of Spary Cast Deposit (분사주조 성형체의 기공형성에 대한 기판재료의 영향)

  • Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 1993
  • The influence of substrate materials on the degree of basal porosity during spray casting process has been investigated. Different conditions of droplet spreading on the substrate were induced by varying the substrate material. Flat sections of cast iron and aluminum have been spray deposited via spray casting process onto an aluminum substrate, a low carbon steel substrate, and an alumina based refractory substrate. Results for cast iron and aluminum sprayed onto the aluminum substrate showed significant improvements in the surface condition and degree of basal porosity with evidence of substrate deformation that round pits ranging from $5{\mu}m$ to $20{\mu}m$ in diameter are distributed on the surface of aluminum substrate. The lowest level of porosity was developed in alumina based refractory material. Several mechanisms for porosity formation were discussed with droplet impact pressure and droplet spreading. Adopting a spray cutting mechanism for removing the periphery of spray cone, porosity level was remarkably decreased.

  • PDF