• Title/Summary/Keyword: Pore shape

Search Result 293, Processing Time 0.022 seconds

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.

Cellular activities of osteoblast-like cells on alkali-treated titanium surface (알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도)

  • Park, Jin-Woo;Lee, Deog-Hye;Yeo, Shin-Il;Park, Kwang-Bum;Choi, Seok-Kyu;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.427-445
    • /
    • 2007
  • To improve osseointegration at the boneto-implant interface, several studies have been carried out to modify titanium surface. Variations in surface texture or microtopography may affect the cellular response to an implant. Osteoblast-like cells attach more readily to a rougher titanium surface, and synthesis of extracellular matrix and subsequent mineralization were found to be enhanced on rough or porous coated titanium. However, regarding the effect of roughened surface by physical and mechanical methods, most studies carried out on the reactions of cells to micrometric topography, little work has been performed on the reaction of cells to nanotopography. The purpose of this study was to examme the response of osteoblast-like cell cultured on blasted surfaces and alkali treated surfaces, and to evaluate the influence of surface texture or submicro-scaled surface topography on the cell attachment, cell proliferation and the gene expression of osteoblastic phenotype using ROS 17/2.8 cell lines. In scanning electron micrographs, the blasted, alkali treated and machined surfaces demonstrated microscopic differences in the surface topography. The specimens of alkali treatment had a submicro-scaled porous sur-face with pore size about 200 nm. The blasted surfaces showed irregularities in morphology with small(<10 ${\mu}m$) depression and indentation among flatter-appearing areas of various sizes. Based on profilometry, the blasted surfaces was significantly rougher than the machined and the alkali treated surfaces (p$TiO_2$) were observed on alkali treated surfaces, whereas not observed on machined and blasted surfaces. The attachment morphology of cells according to time was observed by the scanning electron microscope. After 1 hour incubation, the cells were in the process of adhesion and spreading on the prepared surfaces. After 3 hours, the cells on all prepared surfaces were further spreaded and flattened, however on the blasted and alkali treated surfaces, the cells exhibited slightly irregular shapes and some gaps or spaces were seen. After 24 hours incubation, most cells of the all groups had a flattened and polygonal shape, but the cells were more spreaded on the machined surfaces than the blasted and alkali treated surfaces. The MTT assay indicated the increase on machined, alkali treated and blasted surfaces according to time, and the alkali treated and blasted surfaces showed significantly increased in optical density comparing with machined surfaces at 1 day (p<0.01). Gene expression study showed that mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin of the osteoblast-like cells showed a tendency to be higher on blasted and alkali treated surfaces than on the machined surfaces, although no siginificant difference in the mRNA expression level of ${\alpha}\;1(I)$ collagen, alkaline phosphatase and osteopontin was observed among all groups. In conclusion, we suggest that submicroscaled surfaces on osteoblast-like cell response do not over-ride the one of the surface with micro-scaled topography produced by blasting method, although the microscaled and submicro-scaled surfaces can accelerate osteogenic cell attachment and function compared with the machined surfaces.