• 제목/요약/키워드: Porcine Reproductive and Respiratory Syndrome

검색결과 114건 처리시간 0.114초

돼지 써코바이러스에 대한 단크론항체 생산 및 진단적 응용 (Production and diagnostic applications of monoclonal antibodies against porcine circovirus)

  • 김경미;정지혜;민홍기;이승철;노인순;강신영
    • 대한수의학회지
    • /
    • 제44권2호
    • /
    • pp.259-268
    • /
    • 2004
  • Porcine circovirus type 2 (PCV-2) has been associated with various disease in pigs worldwide including postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). In this study, monoclonal antibodies (MAbs) against PCV were produced, characterized and applications of MAbs as diagnostic reagents were described. Spleen or lymph node cells from BALB/c mouse immunized respectively with PCV-1, PCV-2 or expressed PCV-2/ORF2 proteins in baculovirus were fused with SP2/0 myeloma cells using polyethylene glycol (PEG) and hybridoma cells producing PCV-1 or PCV-2-specific antibody were screened by an indirect immunofluorescence (IIF) test. A total of fifteen MAbs were produced against PCV. Six MAbs were PCV-1-specific and nine were PCV-2-specific. All PCV-1-specific MAbs reacted with only PCV-1 and all PCV-2-specific MAbs were reactive with only PCV-2 by IIF test. None of the MAbs was reactive with porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), porcine rotavirus (PRV), and transmissible gastroenteritis virus (TGEV). Some PCV-2-specific MAbs recognized the PCV-2 infected porcine tissues by IIF or immunohistochemistry (IHC) assay. From this experiment, it was confirmed that MAbs produced in this study were PCV-specific and could be used as reliable diagnostic reagents for PCV-1/PCV-2 detection and differentiation.

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.

Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets

  • Jing Zhang;Chunping Zhao;Min Yao;Jing Qi;Ya Tan;Kaizhi Shi;Jing Wang;Sixuan Zhou;Zhixin Li
    • Journal of Animal Science and Technology
    • /
    • 제66권4호
    • /
    • pp.663-681
    • /
    • 2024
  • Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.

혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형 (Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level)

  • 박최규;윤하정;이창희;정병열;이경기;김현수
    • 대한수의학회지
    • /
    • 제48권1호
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.

돼지 생식기호흡기증후군바이러스의 농장단위 방역대책 수립을 위한 혈청학적 및 바이러스학적 감염유형 분석법 적용 및 비교 (Comparison of Serological and Virological Analysis for Infection Patterns of Porcine Reproductive and Respiratory Syndrome Virus to Establish a Farm Level Control Strategy)

  • 김성희;이창희;박최규
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1170-1176
    • /
    • 2009
  • Porcine reproductive and respiratory syndrome virus (PRRSV) has plagued pig populations worldwide causing severe economical impacts. In order to establish effective strategies for prevention of PRRS, infection patterns on the herd level are primarily evaluated. In the present study, therefore, serological and virological analyses were conducted in 20 pig farms suffering from PRRS. Seroprevalence levels in each farm were grouped into 3 patterns: SN (Stable sow groups/Not infected piglet groups, SI (Stable sow groups and Infected piglet groups), and UI (Unstable sow groups and Infected piglet groups). The rates of each serological pattern were 15% (n=3), 10% (n=2), and 75% (n=15), respectively. In addition, the pattern analysis was extended to virological monitoring on the same farms that further included suckling pig groups. As a result, the infection pattern was classified into 4 categories: SNI (Stable sow groups/Not infected suckler groups/Infected piglet groups), SII (Stable sow groups/Infected suckler groups/Infected piglet groups), UNI (Unstable sow groups/Not infected suckler groups/Infected piglet groups), and UII (Unstable sow groups/Infected suckler groups/Infected piglet groups). The rates of each viroprevalence were estimated at 50% (n=10), 30% (n=6), 10% (n=2), and 10% (n=2), respectively. PRRSV viroprevalence results of suckling pig groups revealed that 8 farms were considered virus positive. In 2 farms among these farms, PRRSV appeared to be transmitted vertically to suckling piglets from their sows. In contrast, piglet-to-piglet horizontal transmission of PRRSV seemed to occur in sucking herds of the remaining farms. Thus, this virological analysis on suckling piglets will provide useful information to understand PRRSV transmission routes during the suckling period and to improve a PRRS control programs. Our seroprevalence and viroprevalence data found that infection patterns between sow and piglet groups are not always coincident in the same farm. Remarkably, 15 farms belonging to the UI seroprevalence pattern showed four distinct viroprevalence patterns (SNI; 7, SII; 4, UNI; 2 and UII; 2). Among these farms, 11 farms with unstable seroprevalence sow groups were further identified as the stable viroprevalence pattern. These results indicated that despite the absence of typical seroconversion, PRRSV infection was detected in several farms, implying the limitation of serological analysis. Taken together, our data strongly suggests that both seroprevalence and viroprevalence should be determined in parallel so that a PRRS control strategies can be efficiently developed on a farm level.

Seroprevalence of swine influenza and porcine reproductive and respiratory syndrome in Korea

  • Jeong, Kwang;Park, Young-Il;Jin, Wen;Han, Jeong-Hee
    • 한국동물위생학회지
    • /
    • 제30권2호
    • /
    • pp.197-203
    • /
    • 2007
  • A total of 501 serum samples were selected from blood samples that were submitted to Department of Veterinary Pathology, Kangwon National University from all provinces in Korea from September 2001 to August 2002. Their sera were examined for antibodies to swine influenza virus subtype H1N1 (SlV H1N1) and porcine repro-ductive and respiratory syndrome virus (PRRSV) according to the age of pig, season, and herd size using enzyme-linked immunosorbent assay. The seroprevalence of SIV H1N1, PRRSV, and dual infection were 39.12%, 61.48%, and 25.95%, respectively. The seroprevalence of SIV H1N1 according to herd size was not significant differences (p>0.05). The results showed that the PRRSV infection spread widely in swine herds throughout the country.

국내 인공수정센터의 웅돈에 대한 번식 관련 바이러스 조사 (A survey of viruses associated with reproductive failure in boar semen in Korean artificial insemination centers)

  • 김영훈;천봉수;김성재;한정희
    • 한국동물위생학회지
    • /
    • 제34권2호
    • /
    • pp.111-116
    • /
    • 2011
  • Artificial insemination (AI) of swine is a very useful reproductive tool and that offers convenience in the Korean swine industry. Since many viruses have been reported to be excreted through boar semen, we investigated the presence of antibodies and antigens against viruses causing reproductive failure in semen of boar in 349 semen samples collected from six Korean AI centers. Viral antigens were detected by polymerase chain reaction (PCR) or reverse transcription-PCR predominantly. The results was as follows. The major reproductive failure causing factor was porcine circovirus type 2 (PCV2), followed by porcine reproductive and respiratory syndrome virus (PRRSV) ($X^2$=166.64, P<0.001). PCV2 and PRRSV, Japanese encephalitis virus (JEV), encephalomyocarditis virus (EMCV) was detected in 73 samples (20.9%), 44 samples (12.6%), 4 samples (1.1%), 3 samples (0.9%), respectively and porcine parvovirus in one sample (0.3%) Classical swine fever virus (CSFV), bovine viral diarrhea virus and Aujeszky's disease virus (ADV) were not detected. Enzyme-linked immunosorbent assay was carried out in 111 serum samples from three AI centers. In most pigs, antibodies response was showed prominently in CSFV (105 sera, 94.6%) ($X^2$=82.580, P<0.001), followed by, in PRRSV (100 sera, 90.1%), PCV2 (92 sera, 90.1%), and PPV (8 sera, 82.9%). ADV antibody was not detected. Thus, the experimental results will be used for the base data, with respect to the state of viral stillbirth in general pig farms, as well as AI centers and breeding farms in Korea.

제주도 내 돼지 살모넬라증의 발생 양상 분석 및 병리학적 연구 (Prevalence and pathologic study of porcine salmonellosis in Jeju)

  • 양형석;강상철;김애란;정병열;김재훈
    • 대한수의학회지
    • /
    • 제57권4호
    • /
    • pp.235-243
    • /
    • 2017
  • Salmonella (S.) Typhimurium is highly contagious, and its infection may rapidly spread within pig populations of herd. According to the survey (1,191 pigs) from 2003 to 2012, 155 pigs (13.0%) were diagnosed as salmonellosis in Jeju. Major porcine salmonellosis cases (88.4%) were concentrated in 4- to 12-week-old weaned pigs, but 6 pigs (3.9%) under 4 weeks old were also diagnosed. Based on the histopathologic examinations, ulcerative enteritis (63.9%) in the large intestine and/or paratyphoid nodules formation (57.4%) in the liver were most prevalent lesions in porcine salmonellosis. Single infection of S. Typhimurium and mixed infection with more than 2 pathogens were detected in 38 (24.5%) and 117 (75.5%) in pigs, respectively. Co-infections of Porcine reproductive and respiratory syndrome virus and Porcine circovirus type 2 were very common in porcine salmonellosis in Jeju and detected in 84 (54.2%) and 59 (38.1%) pigs, respectively. Based on the serotyping tests using 41 bacterial isolates, S. Typhimurium and S. Rissen were confirmed in 39 (95.1%) and 2 (4.9%) cases, respectively.

Viral characteristics of plaque variants of porcine reproductive and respiratory syndrome virus

  • Park, Bong-kyun;Molitor, Thomas W.;Joo, Han-soo
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.751-759
    • /
    • 1999
  • Plaque characteristics of porcine reproductive and respiratory syndrome (PRRS) virus isolates were examined using MARC-145 line cells. The plaque morphology of PRRS virus isolates was variable in size and heterogenic in population. Upon serial passages of the PRRS virus isolates on MARC-145 tells, heterogeneity was maintained but numbers of the large plaque size virus were increased with certain isolates. A PRRS virus isolate with variable plaque sizes was subcloned into 2 populations : small plaque ($H_S$) and large plaque ($H_L$) viruses. Growth kinetics of the subclones were then determined in MARC-145 cells, and production of the structural polypeptides was analyzed by SDS-PAGE. In a comparison of the growth kinetics, the $H_S$ virus showed higher infectivity titers during the first 48 hours but slower to reach the peak titier than $H_L$ virus did. In a nucleotide sequence comparison, differences of 4 nucleotides in open reading frames 5-6 gene were found between $H_S$ and $H_L$ viruses. Both the $H_S$ and $H_L$ clones produced 5 polypeptide bands with molecular weights of 15, 19, 26, 36 and 42 kD. The 5 bands were detected at 48 hours postinoculation (PI) with antisera to $H_L$ and another large plaque virus ($W_L$) and at 72 hours PI with $H_S$ virus antiserum. The present results demonstrate differences of biologic and molecular characteristics between the two PRRS virus plaque clones.

  • PDF