• Title/Summary/Keyword: Porcine Endogenous Retroviruses(PERVs)

Search Result 12, Processing Time 0.018 seconds

Expression analysis of Porcine Endogenous Retroviruses (PERVs) in Korean native pig organs (한국재래돼지의 장기조직에서 PERVs의 발현 특성 분석)

  • Oh, Hyung-Gil;Jung, Woo-Young;Yu, Seung-Lan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Pigs have anatomically and physiologically very similar to human and because of this, pigs are the possible xenotransplantation donors for human organs. PERVs (Porcine Endogenous Retroviruses) are known to be one of the possible obstacles for using porcine organs regardless of the immunological barriers. In order to understand the expression patterns of PERVs in Korean native pigs, we investigated PERV expressions in porcine liver, heart, spleen, and lung samples. After RNA extraction, two types of specific PERV envelope genes (ENV-A and ENV-B) were amplified using specific primers by RT-PCR. The results indicated that the variable PERV expressions were observed in inconsistent patterns among animals and tissues. The PERV expressions were verified with semi-quantitative real-time PCR with three replicates. Even though, these results confirm the previous findings that the PERVs were differentially expressed between animals and tissues. These results also give some valuable information for xenotransplantation when using the Korean native pigs as the organ donor.

Current Status of Xenotransplantation - A Review

  • Lee, J.H.;Moran, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1497-1504
    • /
    • 2001
  • There is emerging interest in using xenotransplantation of porcine cells, tissues and organs for treatment of human illness. This article reviews the current status of xenotransplantation, with particular emphasis on the physiological and immunological barriers to xenotransplantation and genetic manipulations to overcome xenograft rejection. Preliminary success in xenotransplantation therapy for human Parkinson's disease using porcine foetal brain cells is described. Finally the zoonotic dangers of porcine xenotransplantation, most particularly porcine endogenous retroviruses (PERVs), are discussed.

Analysis of Natural Recombination in Porcine Endogenous Retrovirus Envelope Genes

  • Lee, Dong-Hee;Lee, Jung-Eun;Park, Nu-Ri;Oh, Yu-Kyung;Kwon, Moo-Sik;Kim, Young-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.585-590
    • /
    • 2008
  • Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.

Insertional Variations of Two Porcine Endogenous Retroviruses (PERVs) in Korean Native Pigs and Asian Wild Boars

  • Jung, K.C.;Yu, S.L.;Kim, T.H.;Jeon, J.T.;Rogel-Gaillard, C.;Park, C.S.;Jin, D.I.;Moran, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.461-465
    • /
    • 2007
  • Porcine Endogenous Retroviruses (PERVs) are a major concern in relation to xenotransplantation. Previous research indicated that PERVs are present at about 50 copies in the pig genome and their chromosomal insertion sites are different among pig breeds. We examined nine Korean native pigs and seven Asian Wild Boars for the presence of a PERV-A at SSC 1q2.4 and a PERV-B at SSC 7p1.1-2 previously reported in a Large White pig. The PERV-B at locus 7p1.1-2 displayed insertional variability in Korean native pigs and Asian Wild Boars. Using the primers for the PERV-A at 1q2.4 from Large White pig, we only can amplify an unclassified 798 bp sequence, which showed insertional variability only in Korean native pigs. This study indicates that there are differences within and between Asian and European pigs in PERV insertions and suggests that selection could generate PERV-free lines of pigs more suitable for xenotransplantation.

Characterization of Insertional Variation of Porcine Endogenous Retroviruses in Six Different Pig Breeds

  • Jung, W.Y.;Yu, S.L.;Seo, D.W.;Jung, K.C.;Cho, I.C.;Lim, H.T.;Jin, D.I.;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1357-1363
    • /
    • 2012
  • Pigs may need to be exploited as xenotransplantation donors due to the shortage of human organs, tissues and cells. Porcine endogenous retroviruses (PERVs) are a significant obstacle to xenotransplantation because they can infect human cells in vitro and have the potential for transmission of unexpected pathogens to humans. In this research, 101 pigs, including four commercial breeds (23 Berkshire, 13 Duroc, 22 Landrace and 14 Yorkshire pigs), one native breed (19 Korean native pigs) and one miniature breed (10 NIH miniature pigs) were used to investigate insertional variations for 11 PERV loci (three PERV-A, six PERV-B and two PERV-C). Over 60% of the pigs harbored one PERV-A (907F8) integration and five PERV-B (B3-3G, B3-7G, 742H1, 1155D9 and 465D1) integrations. However, two PERV-A loci (A1-6C and 1347C1) and one PERV-B locus (B3-7F) were absent in Duroc pigs. Moreover, two PERV-C loci (C2-6C and C4-2G) only existed in Korean native pigs and NIH miniature pigs. The results suggest that PERV insertional variations differ among pig breeds as well as among individuals within a breed. Also, the results presented here can be used for the selection of animals that do not have specific PERV integration for xenotransplantation research.

Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Kang, Dong-Woo;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.148-151
    • /
    • 2007
  • Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

Comparison of the Effects of Retroviral Restriction Factors Involved in Resistance to Porcine Endogenous Retrovirus

  • Bae, Eun Hye;Jung, Yong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.577-583
    • /
    • 2014
  • Three major classes of retroviral restriction factors (APOBEC3G, Tetherin, and TRIM5${\alpha}$) have been identified in mammals. Restriction factors are cellular proteins that are able to limit viral replication by targeting specific steps of the viral life cycle. To evaluate which restriction factor is the most effective to inhibit the replication of porcine endogenous retroviruses (PERVs), the antiviral activity of each restriction factor was compared. In pseudotype assay, the antiviral activity of human tetherin against PERV pseudotype was slightly weaker than that of human APOBEC3G (hA3G). A combination of tetherin and hA3G was more potent than each individual restriction factor. We questioned whether a combination of tetherin and hA3G could also inhibit the spreading replication of PERV. In agreement with the pseudotype assay, two restriction factors inhibit infectious PERV replication in a spreading infection. In this study, hA3G could strongly inhibit the replication of PERV, but tetherin modestly restricted it. Based on these results, we concluded that a combination of tetherin and hA3G is the most effective way to restrict PERV. A combination of different restriction factors will encourage the development of a new approach to treat retroviral disease.

Molecular Cloning and Phylogenetic Analysis of PERVs from Domestic Pigs in Korea (env gene sequences) (국내 돼지에 존재하는 내인성 레트로 바이러스의 엔밸로프 유전자 클로닝 및 분자 계통학적 분석)

  • Lee, Dong-Hee;Yoo, Jae-Young;Lee, Jung-Eun;Kim, Gye-Woong;Park, Hong-Yang;Lee, Hoon-Taek;Kim, Young-Bong
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.177-186
    • /
    • 2005
  • Xenotransplantation may help to overcome the critical shortage of human tissues and organs for human transplantation, Swine represents an ideal source of such organs owing to their anatomical and physiological similarities to human besides their plentiful supply, However, the use of organs across the species barrier may be associated with the risk of transmission of pathogens, specially porcine endogenous retroviruses (PERVs).• Although most of these potential pathogens could be eliminated by pathogen-free breeding, PERVs are not eliminated by this treatment. PERVs are integrated into the genome of all pigs and produced by normal pig cells and infect human cells. They belong to gamma retroviruses and are of three classes viruses: A, B and C. In the present study, PCR based cloning was performed with chromosomal DNA extracted from pigs from domestic pigs in Korea. Amplified PCR fragments of about 1.5 Kb, covering the partial env gene, were cloned into pCR2.l-TOPO vectors and sequenced. A total of 91 env clones were obtained from domestic pigs, Berkshire, Duroc, Landrace and Yorkshire in Korea. Phylogenetic analysis of these genes revealed the presence of only PERV class A and B in the proportion of 58 % and 42 %, respectively. Among these, 28 clones had the correct open reading frame: 18 clones in class A and 10 clones in class B. Since both these PERV classes are polytropic and have the capacity to infect human cells, our data suggest that proviral PERVs have the potential to generate infectious viruses during or after xenotransplantation in human.

Inhibition of Porcine Endogenous Retrovirus Expression by RNA Interference (RNA 간섭을 통한 Porcine Endogenous Retrovirus의 발현 억제)

  • Lee, Hyun-A;Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2006
  • In recent years the number of patients waiting for organ transplantation has greatly outpaced the supply of human organs available, which leads to a renewed interest in pig-to-human xenotransplantation as an alternative. However, one of the biggest barriers in the xenotransplantation is presence of porcine endogenous retroviruses(PERV) that can infect human cells. In this study, to present a possible solution for this problem we tried to inhibit expression of PERVs using shRNAs(short hairpin RNA) at the level of RNA synthesis and virus release. The shRNA targeting the sequence of PERV A, B type was cloned into pSIREN-RetroQ vector under the control of polymerase-III U6-RNA gene promoter. Quantitative real-time PCR was performed to detect my alterations in mRNA production of PERV A, B targeted by the shRNA in each done. Depending on the target sequence of the shRNA, the transcription of PERV was decreased to as much as 4% and the number of progeny viruses was reduced to less than 1/200,000. Transgenic pigs producing such shRNAs may result in a highly reduced PERV expression in cells and organs, which is a prerequisite for safe xenotransplantations.