Browse > Article

Analysis of Natural Recombination in Porcine Endogenous Retrovirus Envelope Genes  

Lee, Dong-Hee (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University)
Lee, Jung-Eun (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University)
Park, Nu-Ri (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University)
Oh, Yu-Kyung (School of Life Sciences and Biotechnology, Korea University)
Kwon, Moo-Sik (Department of Genetic Engineering, Sungkyunkwan University)
Kim, Young-Bong (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 585-590 More about this Journal
Abstract
Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.
Keywords
Porcine endogenous retrovirus; natural recombination; envelope; xenotransplantation; pig;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Magre, S., Y. Takeuchi, and B. Bartosch. 2003. Xenotransplantation and pig endogenous retroviruses. Rev. Med. Virol. 13: 311-329   DOI   ScienceOn
2 Specke, V., H. J. Schuurman, R. Plesker, C. Coulibaly, M. Ozel, G. Langford, R. Kurth, and J. Denner. 2002. Virus safety in xenotransplantation: First exploratory in vivo studies in small laboratory animals and non-human primates. Transpl. Immunol. 9: 281-288   DOI   ScienceOn
3 Suling, K., G. Quinn, J. Wood, and C. Patience. 2003. Packaging of human endogenous retrovirus sequences is undetectable in porcine endogenous retrovirus particles produced from human cells. Virology 312: 330-336   DOI   ScienceOn
4 Takeuchi, Y., C. Patience, S. Magre, R. A. Weiss, P. T. Banerjee, P. Le Tissier, and J. P. Stoye. 1998. Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72: 9986-9991
5 Mackiewicz, P., D. Mackiewicz, M. Kowalczuk, and S. Cebrat. 2001. Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol. 2: INTERACTIONS1004.1-1004.4
6 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882   DOI   ScienceOn
7 Jo, S. K., H. S. Kim, S. W. Cho, and S. H. Seo. 2007. Genetic and antigenic characterization of swine H1N2 influenza viruses isolated from Korean pigs. J. Microbiol. Biotechnol. 17: 868-872   과학기술학회마을
8 Rozanov, M., U. Plikat, C. Chappey, A. Kochergin, and T. Tatusova. 2004. A Web-based genotyping resource for viral sequences. Nucleic Acids Res. 32: W654-W659   DOI   ScienceOn
9 Harrison, I., Y. Takeuchi, B. Bartosch, and J. P. Stoye. 2004. Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 78: 13871-13879   DOI   ScienceOn
10 Balliet, J. W., J. Berson, C. M. D'Cruz, J. Huang, J. Crane, J. M. Gilbert, and P. Bates. 1999. Production and characterization of a soluble, active form of Tva, the subgroup A avian sarcoma and leukosis virus receptor. J. Virol. 73: 3054-3061
11 Patience, C., Y. Takeuchi, and R. A. Weiss. 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3: 282-286   DOI   ScienceOn
12 Ericsson, T. A., Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience. 2003. Identification of receptors for pig endogenous retrovirus. Proc. Natl. Acad. Sci. USA 100: 6759-6764
13 Rudd, P. M., T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek. 2001. Glycosylation and the immune system. Science 291: 2370-2376   DOI
14 Wood, J. C., G. Quinn, K. M. Suling, B. A. Oldmixon, B. A. Van Tine, R. Cina, S. Arn, C. A. Huang, L. Scobie, D. E. Onions, D. H. Sachs, H. J. Schuurman, J. A. Fishman, and C. Patience. 2004. Identification of exogenous forms of humantropic porcine endogenous retrovirus in miniature swine. J. Virol. 78: 2494-2501   DOI   ScienceOn
15 Kim, D., Y. K. Park, J. S. Lee, J. F. Kim, H. Jeong, B. S. Kim, and C. H. Lee. 2006. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 16: 1912-1918   과학기술학회마을
16 Martina, Y., K. T. Marcucci, S. Cherqui, A. Szabo, T. Drysdale, U. Srinivisan, C. A. Wilson, C. Patience, and D. R. Salomon. 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80: 3135-3146   DOI   ScienceOn
17 Oldmixon, B. A., J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience. 2002. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol. 76: 3045-3048   DOI   ScienceOn
18 Machnik, G., D. Sypniewski, Z. Wydmuch, K. Cholewa, U. Mazurek, T. Wilczok, Z. Smorag, and J. Pacha. 2005. Sequence analysis of proviral DNA of porcine endogenous retroviruses. Transplant Proc. 37: 4610-4614   DOI   ScienceOn
19 Tidona, C. A. and G. Darai. 2001. The Springer Index of Viruses. Springer Verlag, Heidelberg
20 Suzuki, D. T., A. J. F. Griffiths, J. H. Miller, and R. C. Lewontin. 1989. An Introduction to Genetic Analysis, pp. 181-182, 4th Ed. W. H. Freeman and Company, New York
21 Mang, R., J. Maas, X. Chen, J. Goudsmit, and A. C. van Der Kuyl. 2001. Identification of a novel type C porcine endogenous retrovirus: Evidence that copy number of endogenous retroviruses increases during host inbreeding. J. Gen. Virol. 82: 1829-1834   DOI
22 Paradis, K., G. Langford, Z. Long, W. Heneine, P. Sandstrom, W. M. Switzer, L. E. Chapman, C. Lockey, D. Onions, and E. Otto. 1999. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science 285: 1236-1241   DOI   ScienceOn