Analysis of Natural Recombination in Porcine Endogenous Retrovirus Envelope Genes

  • Lee, Dong-Hee (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University) ;
  • Lee, Jung-Eun (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University) ;
  • Park, Nu-Ri (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University) ;
  • Oh, Yu-Kyung (School of Life Sciences and Biotechnology, Korea University) ;
  • Kwon, Moo-Sik (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Young-Bong (Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University)
  • Published : 2008.03.31

Abstract

Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.

Keywords

References

  1. Balliet, J. W., J. Berson, C. M. D'Cruz, J. Huang, J. Crane, J. M. Gilbert, and P. Bates. 1999. Production and characterization of a soluble, active form of Tva, the subgroup A avian sarcoma and leukosis virus receptor. J. Virol. 73: 3054-3061
  2. Ericsson, T. A., Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience. 2003. Identification of receptors for pig endogenous retrovirus. Proc. Natl. Acad. Sci. USA 100: 6759-6764
  3. Harrison, I., Y. Takeuchi, B. Bartosch, and J. P. Stoye. 2004. Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 78: 13871-13879 https://doi.org/10.1128/JVI.78.24.13871-13879.2004
  4. Jo, S. K., H. S. Kim, S. W. Cho, and S. H. Seo. 2007. Genetic and antigenic characterization of swine H1N2 influenza viruses isolated from Korean pigs. J. Microbiol. Biotechnol. 17: 868-872
  5. Kim, D., Y. K. Park, J. S. Lee, J. F. Kim, H. Jeong, B. S. Kim, and C. H. Lee. 2006. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 16: 1912-1918
  6. Machnik, G., D. Sypniewski, Z. Wydmuch, K. Cholewa, U. Mazurek, T. Wilczok, Z. Smorag, and J. Pacha. 2005. Sequence analysis of proviral DNA of porcine endogenous retroviruses. Transplant Proc. 37: 4610-4614 https://doi.org/10.1016/j.transproceed.2005.10.115
  7. Mackiewicz, P., D. Mackiewicz, M. Kowalczuk, and S. Cebrat. 2001. Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol. 2: INTERACTIONS1004.1-1004.4
  8. Magre, S., Y. Takeuchi, and B. Bartosch. 2003. Xenotransplantation and pig endogenous retroviruses. Rev. Med. Virol. 13: 311-329 https://doi.org/10.1002/rmv.404
  9. Mang, R., J. Maas, X. Chen, J. Goudsmit, and A. C. van Der Kuyl. 2001. Identification of a novel type C porcine endogenous retrovirus: Evidence that copy number of endogenous retroviruses increases during host inbreeding. J. Gen. Virol. 82: 1829-1834 https://doi.org/10.1099/0022-1317-82-8-1829
  10. Martina, Y., K. T. Marcucci, S. Cherqui, A. Szabo, T. Drysdale, U. Srinivisan, C. A. Wilson, C. Patience, and D. R. Salomon. 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80: 3135-3146 https://doi.org/10.1128/JVI.80.7.3135-3146.2006
  11. Oldmixon, B. A., J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience. 2002. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol. 76: 3045-3048 https://doi.org/10.1128/JVI.76.6.3045-3048.2002
  12. Paradis, K., G. Langford, Z. Long, W. Heneine, P. Sandstrom, W. M. Switzer, L. E. Chapman, C. Lockey, D. Onions, and E. Otto. 1999. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science 285: 1236-1241 https://doi.org/10.1126/science.285.5431.1236
  13. Patience, C., Y. Takeuchi, and R. A. Weiss. 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3: 282-286 https://doi.org/10.1038/nm0397-282
  14. Rozanov, M., U. Plikat, C. Chappey, A. Kochergin, and T. Tatusova. 2004. A Web-based genotyping resource for viral sequences. Nucleic Acids Res. 32: W654-W659 https://doi.org/10.1093/nar/gkh419
  15. Rudd, P. M., T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek. 2001. Glycosylation and the immune system. Science 291: 2370-2376 https://doi.org/10.1126/science.291.5512.2370
  16. Specke, V., H. J. Schuurman, R. Plesker, C. Coulibaly, M. Ozel, G. Langford, R. Kurth, and J. Denner. 2002. Virus safety in xenotransplantation: First exploratory in vivo studies in small laboratory animals and non-human primates. Transpl. Immunol. 9: 281-288 https://doi.org/10.1016/S0966-3274(02)00039-4
  17. Suling, K., G. Quinn, J. Wood, and C. Patience. 2003. Packaging of human endogenous retrovirus sequences is undetectable in porcine endogenous retrovirus particles produced from human cells. Virology 312: 330-336 https://doi.org/10.1016/S0042-6822(03)00380-5
  18. Suzuki, D. T., A. J. F. Griffiths, J. H. Miller, and R. C. Lewontin. 1989. An Introduction to Genetic Analysis, pp. 181-182, 4th Ed. W. H. Freeman and Company, New York
  19. Takeuchi, Y., C. Patience, S. Magre, R. A. Weiss, P. T. Banerjee, P. Le Tissier, and J. P. Stoye. 1998. Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72: 9986-9991
  20. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  21. Tidona, C. A. and G. Darai. 2001. The Springer Index of Viruses. Springer Verlag, Heidelberg
  22. Wood, J. C., G. Quinn, K. M. Suling, B. A. Oldmixon, B. A. Van Tine, R. Cina, S. Arn, C. A. Huang, L. Scobie, D. E. Onions, D. H. Sachs, H. J. Schuurman, J. A. Fishman, and C. Patience. 2004. Identification of exogenous forms of humantropic porcine endogenous retrovirus in miniature swine. J. Virol. 78: 2494-2501 https://doi.org/10.1128/JVI.78.5.2494-2501.2004